Math 102-OUtLINe For Exam 2

Focus on Sections 4,5,6,7,9-Cryptography will NOT be on the exam

Definitions and Theorems

One thing I hope you all take away from this course is a fluency in the language of number theory. To that end, you are expected to be able to write the definitions of the following terms and the statements of the following theorems on the exam.

- definition of the d-function (from Section 7)
- definition of the σ-function (from Section 7)
- definition of the ϕ-function (from Section 9)
- statement of Theorem 1 of Section 5 ("Linear Congruences Theorem")
- statement of Theorem 1 of Section 6 ("Fermat's Theorem")
- statement of Theorem 2 of Section 6 ("Wilson's Theorem")
- statement of Theorem 1 of Section 9 ("Euler's Theorem")

Problems to Practice

1. Working with basic congruences (Section 4)

- be able to find least residues modulo m
- be able to find solutions to congruences using a table or cleverness, e.g. $16^{85} \equiv(-1)^{85}(\bmod 17)$

2. Solving linear congruences (Section 5)

- be able to solve linear congruences or show that they have no solution
- be able to solve a system of linear congruences with the same modulus
- be able to solve a system of linear congruences with different moduli
- this was the longest type of problem we had

3. Inverses (see my Section 6 Notes)

- be able to find a^{-1} modulo m by solving $a x \equiv 1(\bmod m)$
- know how to use a^{-1} to solve equations

4. Using Fermat's, Euler's, and Wilson's Theorems (Sections 6 \& 9)

- Note: I'm using "Euler's Theorem" to refer to Theorem 1 of Section 9
- be able to use Fermat's and Euler's Theorems to simplify powers
- Euler's Theorem includes Fermat's Theorem so you really only need Euler's Theorem
- when simplifying $a^{k}(\bmod m)$, know what to do if $(a, m) \neq 1$ (because Euler's Theorem does not apply)
- be able to use Wilson's Theorem to simplify congruences with factorials
- be able to use all three theorems in proof questions

5. Computing the d, σ, and ϕ-functions (Sections $7 \& 9$)

- be able to compute $d(n), \sigma(n)$, and $\phi(n)$ (usually by factoring n first)
- know the general formulas for computing d, σ, and ϕ for use in proofs
- know that d, σ, and ϕ are multiplicative for use in proofs

6. Practice proofs too!

- Make sure you can reprove all proofs from the homework. I may or may not ask you to prove the exact same thing, but I will probably choose something similar.

How to study

1. Memorize the definitions and theorems listed above and practice writing them out
2. Review core topics - make sure to have a working understanding of all definitions and theorems
3. Work problems all of the way through-focus on ones similar to those from Homeworks 5-9 and the Warm-Ups
4. Practice proofs-focus on ones similar to those from Homeworks 5-9 and the Warm-Ups
5. Come talk with me if you have any questions
