## Math 102-Outline for the Final Exam

Sections 1-6,9-11 (Section 7 and Cryptography and "Wilson's Theorem" will NOT be on the exam)

## Definitions and Theorems

I hope you all take away from this course a fluency in the language of number theory. To that end, you are expected to be able to write the definitions of the following terms and the statements of the following theorems on the exam.

- definition of a prime number [Section 2]
- definition of what it means that $a$ is congruent to $b$ modulo $m$, i.e. $a \equiv b(\bmod m)$ [Section 4]
- definition of the $\phi$-function [Section 9]
- definition of the order of an integer $a$ modulo $m$, assuming that $(a, m)=1$ [Section 10]
- definition of a primitive root of $m$ [Section 10]
- definition of the Legendre symbol $\left(\frac{a}{p}\right)$ [Section 11]
- statement of the GCD Theorem [Theorem 4 of Section 1]
- statement of Fermat's Theorem [Theorem 1 of Section 6]
- statement of Euler's Criterion [Theorem 2 of Section 11]
- statement of Quadratic Reciprocity [Theorem 4 of Section 11]


## Problems to Practice

## Old Material

1. Finding primes and determining if a number is prime (Section 2)

- Lemma 4 of Section 2 is very useful

2. Solving linear Diophantine equations (Section 3)

- be able to write out all integer solutions (if any) to an equation of the form $a x+b y=c$ - remember, you may have to reduce it first to make sure you get all solutions
- know how to quickly check if $a x+b y=c$ has a solution using Lemma 2 of Section 3
- be able to work with systems of equations with more than two variables
- be able to solve these in the context of a word problem too

3. Solving linear congruences (Section 5)

- be able to solve linear congruences or show that they have no solution
- be able to solve a system of linear congruences with the same modulus
- be able to solve a system of linear congruences with different moduli

4. Using Fermat's and Euler's Theorems (Sections 6 \& 9)

- be able to use Fermat's and Euler's Theorems to simplify powers
- be able to use the theorems in proof questions

5. Computing Euler's $\phi$-function (Section 9)

- be able to compute $\phi(n)$ (usually by factoring $n$ first)
- know the general formulas for $\phi$ for use in proofs


## New Material

6. Orders of elements and primitive roots (Section 10)

- be able to find the order of $a$ modulo $m$ using a table
- be able to determine the possible orders of numbers modulo $m$ using Theorems 1 and 2 of Section 10
- be able to determine if $a$ is a primitive root modulo $m$ (by computing its order and comparing with $\phi(m)$ )

7. Quadratic Congruences (Section 11)

- know that $x^{2} \equiv a(\bmod p)$ has a solution $\Longleftrightarrow\left(\frac{a}{p}\right)=1$.
- be able to determine if $x^{2} \equiv a(\bmod p)$ has a solution
- use everything: Euler's Criterion, properties of the Legendre symbol, Quadratic Reciprocity, tables...
- be able to actually find the solutions to $x^{2} \equiv a(\bmod p)$ like in the homework
- be able to determine if $x^{2}+b x+c \equiv 0(\bmod p)$ has a solution (by completing the square)


## Practice proofs too!

- Make sure you can reprove all proofs from the homework. I may or may not ask you to prove the exact same thing, but I will probably choose something similar.


## How to study

1. Memorize the definitions and theorems listed above and practice writing them out
2. Review core topics - make sure to have a working understanding of all definitions and theorems
3. Work problems all of the way through-focus on ones similar to those from Homeworks $1-11$ and the Warm-Ups
4. Practice proofs-focus on ones similar to those from Homeworks 1-11 and the Warm-Ups
5. Come talk with me if you have any questions
