Section 10 - Primitive Roots

We learned that if (a,m)=1, then $a^{\varphi(m)} \equiv 1 \pmod{m}$. However, it's possible that $a^{k} \equiv 1$ with k < c p(m).

For example, working mod 7, we know that $\Psi(7)=6$, so if $(a,7)=1$, then $a^6=1 \pmod{7}$. But often an exponent smaller than 6 will do. mod 7						
ا د	م	3 0	4 Q	مح	a	
	ι	(1	l	(≡
Z	4		Z	લ	1	2 ³ =
3	2	6	ч	5		3= 1
4	Z		4	٢	1	43=1
5	4	ى	2	3	\bigcirc	55= \
6		م	۱.	ۍ ا	1 (د ² = ۱

Def If me Zt and (a, m) = 1, then the smallest ke Zt such that $a^{k} \equiv 1 \pmod{n}$ is called the order of a modulo m, denoted ordm(a).

Ex Find the orders of the L.R. mod 7. By the above table... $ord_{7}(1)=1$ $ord_{7}(4)=3$ $ord_{7}(2)=3$ $ord_{7}(5)=6$ $ord_{7}(0)$ DNE $ord_{7}(3)=6$ $ord_{7}(6)=2$

* Notice that
$$\operatorname{ord}_{m}(a) \leq \varphi(m)$$
 since $a^{\varphi(m)} \equiv [$
* But more seems true - in the last example,
the order of each (nonzero) element divided ($c = \varphi(7)$)
EX Find all $n \in \mathbb{Z}^{4}$ s.t $4^{n} \equiv 1 \pmod{1}$. What is $\operatorname{ord}_{q}(4)$?
 $a^{1}e^{3}e^{4}a^{5}e^{4}a^{2}$
 $a^{2}e^{3}e^{4}a^{5}e^{4}a^{2}$
 $a^{2}e^{3}e^{4}a^{5}e^{4}a^{2}$
 $a^{2}e^{3}e^{4}a^{5}e^{4}a^{2}$
Theorem [Let $m \in \mathbb{Z}^{4}$. If $(a_{1}m) = 1$ and $t = \operatorname{ord}_{1}(a)$,
then $a^{2} \equiv 1 \pmod{1}$ if and only if t divides n.
Because we know $a^{q(m)} \equiv 1$, we automatically get...
Theorem 2 Let $m \in \mathbb{Z}^{4}$. If $(a_{1}m) = 1$, then $\operatorname{ord}_{m}(a)$
divides $cp(m)$.
PH of Thun!
(\leftarrow) Assume $t \mid n$, so $n = q \cdot t$ for $a \in \mathbb{Z}^{4}$. Since
 $t = \operatorname{ord}_{m}(a)$, $a^{4} \equiv 1 \pmod{m}$, so $a^{2} = a^{2t} - (a^{4})^{2} \equiv 1^{q} \equiv 1 \pmod{m}$.
(\leftarrow) Assume $a^{n} \equiv 1 \pmod{m}$. Use the division
 $a \mid gorithm$ to write $n = qt + r$ with $0 \leq r \leq t$.
We want to show $r = 0$. Now, (
 $1 \equiv a^{n} = a^{2tar} = a^{4} \cdot a^{r} \equiv (a^{2})^{2} \cdot a^{r} \equiv a^{r} \pmod{n}$).
Thus $a^{r} \equiv 1 \pmod{m}$. Since $t = \operatorname{ord}_{m}(a)$, t
is the smallest , positive integer s.t. $a^{t} \equiv 1 \pmod{n}$.
Since $r \leq t$ and $a^{r} \equiv 1$, r must not be
positive, so as $rio, r = 0$.

$$\frac{E \times If}{a^{12} \equiv 1} \Rightarrow (a^3)^4 \equiv 1 \equiv 1 \Rightarrow ord_m (a^3) = H.$$

$$E_X$$
 If $a^{4} \equiv 1 \pmod{m}$, must it be true that $\operatorname{ord}_{m}(a) = 4$?
No: for example $(-1)^{4} \equiv 1 \pmod{m}$ but $\operatorname{ord}_{m}(-1) = 2$.

Let's revisit Theorem 1: if
$$(a_1m) = 1$$
 and $t = ordm(a)$,
then $a^n \equiv 1 \pmod{m} \iff t + n \Rightarrow n \equiv 0 \pmod{t}$
Thus,
 $a^r \equiv l \equiv a^s \pmod{m} \iff r \equiv 0 \equiv s \pmod{t}$
what if $a^r \equiv a^s \pmod{m}$, dowe still get $r \equiv s \pmod{t}$?

Recall the powers of 4 mod 9:

$$\frac{a a^{2} e^{3} e^{4} a^{5} e^{4} a^{3} a^{4} a^{3} a^{2} a^{4} a^{4} a^{4}}{=} \frac{mod 9}{mod 9}$$
Note: $ord_{9}(4)=3$

$$\frac{a a^{2} e^{3} e^{4} a^{5} e^{4} a^{3} a^{4} a$$

optional

* primitive roots have the largest possible order.

Ex 2 is a primitive root of 9

$$p(q)=6$$

$$\frac{a a^{2} a^{3} a^{4} a^{5} a^{6}}{2 4 8 7 5 0}$$

$$\lim_{b \to 0} a^{1} (q rate)$$

$$\frac{a a^{2} a^{3} a^{4} a^{5} a^{6}}{2 4 0}$$

$$\frac{a a^{2} a^{4} a^{6}}{2 4 0}$$

$$\frac{a a^{2} a^{4} a^{4}}{3 0}$$

$$\frac{a^{2} a^{4} a^{4}}{3 0}$$

$$\frac{a^{4} a^{4}}{3 0}$$

... but we saw that non-primes may have primitive
roots, e.g. 9, but not 8, ... maybe just prime powers?

Ex Show 18 has a primitive root.
•
$$\varphi(18) = (2-1) \cdot 3(3-1) = G$$

• need to find an element a with $\operatorname{ord}_{18}(a) = G$
• only chance is with $(a, 18) = 1$
Use trial + error :

 $\frac{a}{1} + \frac{a}{2} + \frac{a}{3} + \frac{a}{4} + \frac{a}{3} + \frac{a}{4}$
 $\frac{1}{11} + \frac{1}{12} + \frac{1}{11} + \frac{1}{12} + \frac{1}{12}$

try first?

Det mer Let mer Then m has a primitive existence but not root if and only if m=1,2,4, pe, or 2.pe for how to find P an odd prime.

pt iden
Extra f(x) is linear:
$$f(x) = a_1 x + a_1$$
. Then $(a_1, p) = 1$
so $a_1 x + a \equiv O(m \circ dp)$ has 1 sol.
 $deg f(x) \geq 2$: if $f(x)$ has a root r, then
 $f(x) \equiv (x - r) \cdot g(x) \pmod{p}$
and
 $f(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) \Rightarrow x = r \text{ or } g(x) \equiv O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = x = r \text{ or } g(x) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = F(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ dp)$
 $g(x) \equiv O(m \circ dp) = O(m \circ d$

$$\frac{pf}{dea} \quad for Thm 6}{WTS that there are $p(p-1)$ primitive roots
of p.
Consider the Set $A = \sum 1, 2, \dots, p-1$.
Every element of A has an order, and
the order must be a divisor of $p-1$. Let
 $\psi(t) = \#$ obelements of A that have order t.
Note that $\sum \psi(t) = p-1$.
Also we learned in the last chapter that
 $\sum \psi(t) = p-1$
Thus $\sum \psi(t) = p-1$
Thus $\sum \psi(t) = p-1$
The goal is to show that $\psi(t) = \varphi(t)$,
because then $\psi(p-1) = \varphi(p-1)$.
Since $\#$ is true, it suffices to
show that $\psi(t) \le \varphi(t)$ for all $t|p-1$.
Casel: $\psi(t) = 0$
Then charly $\psi(t) \le \varphi(t)$.$$

case 2:
$$\psi(t) \neq 0$$
.
we aim to show $\psi(t) = \psi(t)$, and all
ue know right now is $\psi(t) > 0$. Let a be
on element of order t.
Now, every element of order t is a solution

40

$$x^{\pm} \equiv 1 \pmod{p}$$

and by Lemma 3, there are exactly t solutions, of which a is one. Notice that

$$a^{t} \equiv | \Longrightarrow (a^{k})^{t} \equiv (a^{t})^{k} \equiv |$$

50

a,
$$a^2$$
, a^3 , ..., a^{t}
are the t solutions to $x^{t} \equiv 1 \pmod{p}$. So,
the elements of order t are on this
list — which ones are they?
 $\frac{1}{p} \boxed{\frac{\text{Lemma 2}}{\text{a has order t}}, \frac{1}{p} (\frac{1}{p}) = 1}{\frac{1}{p}}$
Thus,
 $\psi(t) = \# \text{ elem, of order t} = \psi(t)$