Section 10 - Primitive Roots

We learned that if $(a, m)=1$, then $a^{\varphi(m)} \equiv 1(\bmod m)$. However, it's possible that $a^{k} \equiv 1$ with $k<\varphi(m)$.

For example, working mod 7 , we know that $\varphi(7)=6$, so if $(a, 7)=1$, then $a^{6} \equiv 1(\bmod 7)$.
But often an exponent smaller than 6 will do.
$\bmod 7$

a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
(1)	1	1	1	1	1
2	4	(1)	2	4	1
3	2	6	4	5	1
4	2	(1)	4	2	1
5	4	6	2	3	(1)
6	(1)	6	1	6	1

$$
\begin{aligned}
& 1^{1} \equiv 1 \\
& 2^{3} \equiv 1 \\
& 3^{6} \equiv 1 \\
& 4^{3} \equiv 1 \\
& 5^{6} \equiv 1 \\
& 6^{2} \equiv 1
\end{aligned}
$$

Def If $m \in \mathbb{Z}^{+}$and $(a, m)=1$, then the smallest $k \in \mathbb{Z}^{+}$such that $a^{k} \equiv \backslash(\bmod m)$ is called the order of a modulo m, denoted ord (a).

Ex Find the orders of the L.R. mod 7 .
By the above table...

$$
\begin{aligned}
& \operatorname{ord}_{7}(1)=1 \\
& \operatorname{ord}_{7}(2)=3 \\
& \operatorname{ord}_{7}(3)=6
\end{aligned}
$$

$$
\operatorname{ord}_{7}(4)=3
$$

$$
\text { ord } 7(5)=6
$$

$\operatorname{ord}_{7}(0)$ DNE

$$
\text { ard } 7(6)=2
$$

* Notice that ord $(a) \leqslant \varphi(m)$ since $a^{\varphi(m)} \equiv 1$
* But more seems true - in the last example, the order of each (nonzero) element divided $6=\varphi(7)$.

EX F ind all $n \in \mathbb{Z}^{+}$s.t $4^{n} \equiv 1(\bmod 9)$. What is ord $9(4)$?

$$
\begin{aligned}
& a a^{2} a^{3} a^{4} a^{5} a^{6} a^{7} \\
& \hline 4 \text { (1) } 4 \text { (1) } 4 \text { (1) } n=\frac{3,6,9,12, \ldots}{a} \text { ord, }(4)=3 \\
& \text { malt. of order }
\end{aligned}
$$

Theorem (Let $m \in \mathbb{Z}^{+}$. If $(a, m)=1$ and $t=\operatorname{ord}_{n}(a)$, then $a^{n} \equiv 1(\bmod m)$ if and only if t divides n.

Because we know $a^{\varphi(m)} \equiv 1$, we automatically get...
Theorem 2 Let $m \in \mathbb{Z}^{+}$. If $(a, m)=1$, then ord m (a) divides $\varphi(m)$.
pf of Thu
(ङ) Assume t) n, so $n=q \cdot t$ for $a \in \mathbb{Z}^{+}$. since 2) Assume t, n, so $n=a^{n} \equiv a^{q \cdot t}=\left(a^{t}\right)^{1} \equiv$
$t=\operatorname{ordm}(a), ~ \bmod m)$ so $a^{t} \equiv$
$1^{q} \equiv 1(\bmod m)$.
(\Longrightarrow) Assume $a^{n} \equiv 1(\bmod m)$. Use the division algorithm to write $n=q t+r$ with $0 \leq r<t$. we want to show $r=0$. Now,

$$
\begin{aligned}
& \text { t to show r}
\end{aligned} \begin{aligned}
& 1 \equiv a^{n}=a^{q^{t+r}}=a^{q t} \cdot a^{r}=\left(a^{t}\right)^{2} \cdot a^{r} \equiv a^{r}(\operatorname{modm}) \\
& t=\operatorname{ordm}_{m}(a)
\end{aligned}
$$

Thus $a^{r} \equiv 1(\operatorname{modm})$. Since $t=\operatorname{ordm}_{m}(a), t$
 Since $r<t$ and $a^{r} \equiv 1, r$ must not be positive, so as $r \geqslant 0, r=0$.

Ex Find an a of the given order, if possible.
(a) $\operatorname{ord}_{q}(a)=2 \quad a \equiv-1$
(b) $\operatorname{ord}_{9}(a)=4$
not possible $-4 X \varphi(9)=6$
(c) $\operatorname{ord}_{9}(a)=6$
trial+ error $a=2,-2$

Ex If $\operatorname{ord}_{m}(a)=12$, what is ord $\left(a^{3}\right)$?

$$
a^{12} \equiv 1 \Rightarrow\left(a^{3}\right)^{4} \equiv 1 \Rightarrow \operatorname{ordm}_{m}\left(a^{3}\right)=4 \text {. }
$$

Ex If $a^{4} \equiv 1(\bmod m)$, must $i+$ be true that $\operatorname{ord}_{m}(a)=4$? No: for example $(-1)^{4} \equiv 1(\bmod m)$ but $\operatorname{ordm}(-1)=2$.

Let's revisit Theorem 1: if $(a, m)=1$ and $t=\operatorname{ordm}(a)$, then $a^{n} \equiv 1(\bmod m) \Longleftrightarrow+1 n \leadsto n \equiv 0(\bmod t)$

Thus,

$$
a^{r} \equiv l \equiv a^{s}(\bmod m) \Longleftrightarrow r \equiv 0 \equiv s(\bmod t)
$$

what if $a^{r} \equiv a^{s}(\operatorname{modm})$, dow still get $r \equiv s(\bmod t)$?

Recall the powers of $4 \bmod 9$:

$a a^{2} a^{3} a^{4} a^{5} a^{6} a^{7} a^{8} a^{2} a^{10} a^{11}$
7 (1) 4×7 (1) 4 (1) $4{ }^{7}=$ Node: $\operatorname{ord}_{9}(4)=3$

Thus $a^{r} \equiv a^{s}(\bmod 9) \Longleftrightarrow$ s-r isamultiple of 3

$$
\begin{array}{ll}
a^{5} \equiv a^{11} & 11-5 \\
& s \equiv r(\bmod 3)
\end{array}
$$

Theorem 4 If $(a, m)=1$ and $t=\operatorname{ordm}(a)$, then $a^{r} \equiv a^{s}(\bmod m)$ if and only if $r \equiv s(\bmod t)$.
pt
Since $(a, m)=1, a^{-1}$ exists - $a \cdot a^{-1} \equiv 1(\operatorname{modm})$.
We may assume that $s \geqslant r$.

$$
\begin{aligned}
& a^{r} \equiv a^{s} \bmod m \Longleftrightarrow \underbrace{a \cdot a \cdots a}_{r \text { tines }} \equiv \underbrace{a \cdot a \cdots a}_{s \text { tines }} \\
& \Longrightarrow \underbrace{a \cdot a \cdot \cdots a}_{r \text { ties }} \underbrace{a^{-1} a^{-1} \cdots a^{-1}}_{r \text { tines }} \equiv \underbrace{a \cdot a \cdot \cdots a}_{s \text { tines }} \underbrace{a^{-1} a^{-1} \cdots a^{-1}}_{r \text { ties }} \\
& \Longleftrightarrow 1 \equiv \underbrace{a \cdot a \cdots a}_{(s-r)+i n e s} \\
& \Longleftrightarrow 1 \equiv a^{s-r} \quad \text { gTeovern } 1 \\
& \Longleftrightarrow t \mid s-r \\
& \Longleftrightarrow r \equiv s(\bmod t) D
\end{aligned}
$$

Ex Suppose that $(a, 45)=1$. What ane the possible values for $\operatorname{ord}_{45}(a)$?

Let $k=\operatorname{ord}_{45}(a)$. Then $k \mid \varphi(45)$. Now $\varphi(45)=$ $\varphi(9.5)=\varphi(9) \varphi(5)=3 \cdot 2 \cdot 4=24$. Thus k must be a divisor of $24: 1,2,3,4,6,8,12,24$.

Question: is there an a with $\operatorname{ord}_{45}(a)=24$??
Def If a isaleastresidve (modm) for which $\operatorname{ord}_{m}(a)=\varphi(m)$, we say that a is a primitive rootof m.

* primitive roots have the largest possible order.

Ex 2 is a primitive root of 9

$$
\varphi(9)=6
$$

a	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
2	4	8	7	5	(1)

all 6 numb. b/w 1 iq rel.

Ex 2 is not a primitive root of 7 , but 3 is

$$
\varphi(7)=6 \quad \begin{array}{lllll}
a & a^{2} & a^{3} & a^{4} & a^{5} \\
2 & a^{6} \\
2 & 4 & D & & \\
3 & 2 & 6 & 4 & 5
\end{array}
$$ prime to 9

Notice that...

$$
\begin{aligned}
& \text { (1) all } 6 \text { numbers } \\
& \text { b/w } 1 \leq 7 \text { rel. prime }
\end{aligned}
$$

$$
\text { to } 7
$$

\rightarrow Theorem 5 If g is a primitive root of m, then why the least residues of
we care ... application coming in
next are exactly the numbers $6 / w 1$ and m that are section relatively prime to m.
pf ... use Theorem 4 - see book.

Big Question: do primitive roots always exist?
Ex Show that there are no primitive roots of 8 .

$$
\varphi(8)=4
$$

$a \quad a^{2} \quad a^{3} \quad a^{4}$

$$
(a, 8)=1 \Rightarrow a^{2} \equiv 1 \bmod 8
$$

7 (1)
The situation is much better for primes...
\rightarrow Theorem 6 Every prime p has $\varphi(p-1)$ primitive roots.
existence
but not
how to find
... but we saw that non-primes may have primitive roots, e.g. 9, but not 8,... maybe just prime powers?

Ex show 18 has a primitive root.

- $\varphi(18)=(2-1) \cdot 3(3-1)=6$
- need to find an element a with ord al $_{18}(a)=6$
- only chance is with $(a, 18)=1$ use trial terror:

\mapsto Theorem Let $m \in \mathbb{Z}^{+}$. Then m has a primitive existence root if and only if $m=1,2,4, p^{e}$,or $2 \cdot p^{e}$ for but not find P an odd price.

Ingredients for the proof of Thu 6 * Remember, in Thu 6, the modulus is prime.

Lemma 2 If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{n} \neq 0(\bmod p)$, then $f(x)$ has at most n roots modulo p.
pt idea
$f(x)$ is linear: $f(x)=a, x+a$. Then $(a, p)=1$ So $a_{1} x+a \equiv 0(\bmod p)$ has 1 sol.
deg $f(x) \geqslant 2$: if $f(x)$ has a root r, then

$$
f(x) \equiv(x-r) \cdot g(x)(\bmod p)
$$

and

$$
f(x) \equiv 0(\bmod p) \underset{p}{\Rightarrow} x=r \text { or } \frac{g(x) \equiv 0(\bmod p)}{\text { now this has }} \begin{aligned}
& \text { fewer roots } \\
& \text { them } f(x) \text { pis prime! } \\
& \begin{array}{l}
\text { use induction }
\end{array}
\end{aligned}
$$

Ex show that $x^{2}+x \equiv 0(\bmod 6)$ has 4 solutions.

$$
x \equiv 0,-1,2,3
$$

Lemma 3 If $d \mid p-1$, then $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
pt

- By Fermat's Thu, $x^{p-1} \equiv((\bmod p)$ has exactly $p-1$ solutions (namely $1,2, \ldots, p-1$)

$$
0 \quad x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{p-1-2 d}+\cdots+x^{n}+1\right)
$$

\uparrow general form of $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right.$

> at most d roots by Lemma

- LHS has $p-1$ roots mod p $x^{d}-1$ has droots (and $h(x)$ has p-1-d roots)

Pf idea for The 6
WTS that there are $\varphi(p-1)$ primitive roots of p.

Consider the set $A=\{1,2, \ldots, p-1\}$. Every element of A has an order, and the or cler must be a divis or of $p-1$. Let $\Psi(t)=\#$ of elements of A that have order t.

Note that $\sum_{\left.t\right|_{p-1}} \Psi(t)=p-1$.
Also we learned in the last chapter that

$$
\sum_{t \mid p-1} \varphi(t)=p-1
$$

Thus

$$
\sum_{\left.t\right|_{p-1}} \varphi(t)=\sum_{\left.t\right|_{p-1}} \varphi(t)
$$

The goal is to show that $\psi(t)=\varphi(t)$, because then $\psi(p-1)=\varphi(p-1)$.
Since $\&$ is true, it suffices to show that $\frac{\varphi(t) \leqslant \varphi(t)}{\text { of wall to } t \mid p-1 \text {. }}$ prove

$$
\text { case l: } \psi(t)=0
$$

Then clearly $\psi(t) \leq \varphi(t)$
case 2: $\psi(t) \neq 0$.
we aim to show $\varphi(t)=\varphi(t)$, and all we know right now is $\psi(t)>0$. Let a be an element of order t.

Now, every element of order t is a solution to

$$
x^{t} \equiv 1(\bmod p)
$$

and by Lemma 3, there are exactly t solutions, of which a is one. Notice that

$$
a^{t} \equiv 1 \Rightarrow\left(a^{k}\right)^{t} \equiv\left(a^{t}\right)^{k} \equiv 1
$$

so

$$
a, a^{2}, a^{3}, \ldots, a^{t}
$$

are the t solutions to $x^{t} \equiv 1(\bmod p)$. So, the elements of order t are on this list _ which ores are they?
\square
\vdots
\vdots
0 Lemma 2: if a has order t, then

Thus, a^{k} hasorder t if $(k, t)=1$.

$$
\psi(t)=\# \text { elem, of order } t=\varphi(t)
$$

