Course Introduction

What is this course about? ... the integers.

Notation

- Integers: $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- Positive integers: $\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$
- Nonnegative integers: $\mathbb{Z} \geqslant 0=\{0,1,2,3, \ldots\}$
- Rational numbers: $\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$ and $\left.b \neq 0\right\}$ I such that
- Real numbers: $\mathbb{R} \leftarrow$ includes $\frac{1}{2},-\sqrt{2}, \pi, \ldots$

Familiar Problem Find all real solutions
(a) $2 x=1 \quad x=1 / 2$
(b) $x\left(x^{2}-2\right)=0 \quad x=0, \pm \sqrt{2}$
(C) $x^{2}=-1$
no solution (in \mathbb{R})
(d) $x^{2}+y^{2}=25$ all points on circle of radius 5 centered at the origin

Number - theoretic (Diophantine) Problem Find all integer solutions
(a) $2 x=1 \quad$ no sol. $($ in $\mathbb{Z})$
(b) $x\left(x^{2}-2\right)=0 \quad x=0$
(c) $x^{2}=-1 \quad$ no sol. $($ in $\mathbb{Z})$
in e: the order
(d) $x^{2}+y^{2}=25$ Hmm...try arable, e.g. $(\pm 0, \pm 5),(\pm 3, \pm 4)$

Another Diophantine Problem

Recall 11:

Pythag. the

- Pythagoras of Samos (Greek, $6^{\text {th }}$ century BCE)

L studied in Egypt and result may have bee known to Babylonians (~ 1900-540 BCE)

- Result was independently discovered by Mesopotamians, Indians, and Chinese (in the least)

Q: what right triangles do you know with integer sides?

$$
\begin{aligned}
& (3,4,5) \rightarrow(6,8,10) \rightarrow(12,16,20) \rightarrow \cdots \\
& (0,1,1) \rightarrow(0,2,2) \rightarrow \cdots
\end{aligned}
$$

Problem: Find a $l l$ integer solutions to $x^{2}+y^{2}=z^{2}$. τ called Pythagorean triples

- This is a problem we will probably look at later in the course.

More Problems
so ignoring like $(0,1,1)$

- $x^{2}+y^{2}=z^{2}$ has ∞ - many solutions in $\mathbb{Z}>0$
- what about $x^{3}+y^{3}=z^{3}$?
- what about $x^{4}+y^{4}=z^{4}$?

Fermat's Last Theorem If $n \geqslant 3$, then
$x^{n}+y^{n}=z^{n}$ has no positive integer solutions.

- published in 1995 by Andrew Wiles (Oxford) and resulted in big prizes

Here's another problem...
What are the prime numbers? $2,3,5,7,11, \ldots$
Did you ever notice that:

$$
\begin{aligned}
& 4=2+2 \\
& 6=3+3 \\
& 8=3+5 \\
& 10=5+5
\end{aligned}
$$

$$
12=5+7
$$

$$
14=7+7
$$

$16=\longleftarrow$ do you see the game we are playing? Can you continue?

Goldbach's Conjecture Every even integer greater than 2 can be expressed as the sum of two primes.

- unproven (known to betrue up to 10 0^{17})
- the conjecture implies that every integer greater than 5 can be written as the sum of 3 primes
- Theorem (Helfgott-2013) Every odd integer greater than 5 can be expressed as the sum of 3 primes

