Section 1 - Integers

Warm-up How many numbers can you pick from $\{1,2, \ldots, 20\}$ so that no pair of numbers you picked add up to another number you picked.

- second half or odds
we start with a fund amental notion.
Deft Let $d, n \in \mathbb{Z}$. We say that d divides n if there is an integer $c \in \mathbb{Z}$ such that $n=d c$. In this case, wealso say that d is a divisor of n.

Notation

- " ddivides $n " \leftrightarrow d \mid n$
- "d does not divide $n " \longleftrightarrow d \nmid n$

Ex Justify each ot the following:
(a) $2 \backslash 14 \quad 14=2.7$
(c) $0 f 10$
(b) $-6148 \quad 48=(-6)(-8)$ $0110 \Rightarrow 0 . d=10$ but $0 . d=0$ for all $d \in \mathbb{Z}$

Ex write each statement using "bar" notation.
(a) 7 divides C
(c) n is divisible

$$
\begin{equation*}
7 \mid c \tag{by 5}
\end{equation*}
$$

$$
5 \mathrm{ln}
$$

(b) x is not a divisor of y
(d) z is even $x \not x y$ 2) z
 conclusion
where to start? where to end?
on Suppose ala and dib. Then

- $a=d e$ for sone $e \in \mathbb{Z}$
- $b=d f$ for some $f \in \mathbb{Z}$

Thus $a+b=d e+d f=d \frac{(e+f)}{g}$. Let $g=e+f$
Then $g \in \mathbb{Z}$ and $a+b=d g$, so $\xlongequal[\text { conclusion }]{d \mid a+b}$.

Lemma Let $a, b, d \in \mathbb{Z}$. If $d \mid a$, then $d \mid a \cdot b$.
$p f$
Suppose $d \backslash a$. Then $a=d e$ for sone $e \in \mathbb{Z}$.
Now, $a b=d e b=d(e b)$. Let $c=e b$.
Then $c \in \mathbb{Z}$ and $a b=d c$, so $d \mid a b$.

Question Does 3 divide $21+24+99 ?$ How did you think about this?

Lemma 2 Let $a_{1}, \ldots, a_{n}, c_{1}, \ldots, c_{n}, d \in \mathbb{Z}$. If $d \mid a_{i}$ for all $1 \leq i \leq n$, then $d \mid\left(c_{1} a_{1}+\cdots+c_{n} a_{n}\right)$.
$p f$
Similar to before. (See the book.)

Ex Suppose you have 99 coins made up of pennies, dimes, and quarters. Is it possible that you have exactly $\$ 5.00$?

We want to solve
(1)

$$
\begin{align*}
p+d+q & =99 \\
p+10 d+25 q & =500 \tag{2}
\end{align*}
$$

$$
p, d, q \in \mathbb{Z}\} \begin{aligned}
& \text { Diophantine } \\
& \text { system }
\end{aligned}
$$

Importantly, we want to know if there is an integer solution.

Notice that
(2)

$$
\begin{aligned}
-(1) & \Rightarrow 9 d+24 q=401 \\
& \Rightarrow 3(3 d+8 q)=401
\end{aligned}
$$

If there is a solution with $p, d_{1 q} \in \mathbb{Z}$, then 3 divides 401 . But 3 does not divide 401, so there is notum integer solution.

Final answer: Not possible

Common divisors

Def Let $a_{1}, \ldots, a_{n} \in \mathbb{Z}$. We say $d \in \mathbb{Z}$ is a common divisor of a_{1}, \ldots, a_{n} if d divides each of a_{1}, \ldots, a_{n} (i.e. $d\left|a_{1}, \ldots, d\right| a_{n}$).

Ex Find all common divisors
(a) $8,12 \pm 1, \pm 2, \pm 4$ ged is 4
(b) $-15,25 \pm 5 \quad$ gal is 5
(C) $-15,25,6 \pm 1 \quad$ gad is 1

Notice: there is always a greatest common divisor.

Def Let $a, b \in \mathbb{Z}$ with a, b not both 0 . Then $d \in \mathbb{Z}$ is called the greatest common divisor of a and b if
(1) d is a common divisor of a and b;
(2) if c is any common divisor of a and b then $c \leq d$.

- we denote the gcd by $\operatorname{gcd}(a, b)$ or just (a, b)
- notice that $\operatorname{gcd}(0,0)$ is undefined.
- also $\operatorname{gcd}(a, b) \geqslant 1$. the book

Ex Find $\operatorname{gcd}(12,-30)$.
(1) list common divisors: $\pm 1, \pm 2, \pm 3, \pm 6$
(2) answer: $\operatorname{gcd}(12,-30)=6$.

Questions: what's the use of gad's ' how to find them?

Def Integers a and b are relatively prime if $\underline{\operatorname{gcd}}(a, b)=1$.
\uparrow thus, the only common divisors are ± 1

Theorem 1 Let $a, b \in \mathbb{Z}$. If $d=\operatorname{gcd}(a, b)$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
\uparrow we saw $\operatorname{gcd}(12,-30)=6$
then $\operatorname{gcd}\left(\frac{12}{6},-\frac{30}{6}\right)=\operatorname{gcd}(2,-5)=1$
pf
Let $c=\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)$. WTS $c=1$
(1) $c \geqslant 1 \mathrm{~b} / \mathrm{c}$ ged's are always at least 1 .
(2) $c \leq 1 \quad b / c \cdots$

$$
\begin{aligned}
& c=\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right) \Rightarrow \begin{array}{l}
\frac{a}{d}=c \cdot r \\
\frac{b}{d}
\end{array}=c \cdot s \\
& \Rightarrow \begin{array}{l}
a
\end{array} \quad \text { for } \quad r, s \in \mathbb{Z} \\
& b=c \cdot d
\end{aligned}
$$

$\Rightarrow c d$ is a common divisor of a and b

$$
\begin{aligned}
& \Rightarrow c d \leq d \\
& \Rightarrow c \leq 1
\end{aligned}
$$

since d is
positive

Since $c \geqslant 1$ and $c \leqslant 1, c=1$.

Euclidean Algorithm
T for computing ged's
we start with an essential theorem about divisibility...

Question: Recall that $6 \sqrt{22}$. What does this $-\frac{18}{(4)}$
mean? Quotient is 2, remainder is 4 . This

$$
22=3 \cdot 6+4
$$

Follow-up: Does 6 divide 22? Why? No, remainder of 4 .
a workhorse
of algebra

Theorem 2 (Division Algorithm) Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Then there exist unique integers q (quotient) and r (remainder) with $0 \leq r<b$ such that

$$
a=q b+r
$$

Notice that $b \mid a \Longleftrightarrow r=0$.
pf idea
Example:

In general:

consider the set of all non-negative integers of the form $a-k b$. Choose the smallest one and call it r. Then $r=a-q b$ for some $q \in \mathbb{Z}$ and

- $0 \leq r<b$

AND

- $a=q b+r$ for some $q \in \mathbb{Z}$.

Lemma 3 If $a, b, q, r \in \mathbb{Z}$ with $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
p^{f}

Consider:

Step 1: if d divides a and b, then al must also divide r. Why?
$r=a-2 b$ so $d \mid a$ and $d \mid b$ implies $d \mid r$. Thus $\operatorname{gcd}(a, b) \leqslant \operatorname{gcd}(b, r)$.

Step 2: if d divides b and r, trend mustalso divide a. Why
$a=q b+r$ so $d \mid b$ and $d \mid r$ implies $d \backslash a$.
Thus, $\operatorname{gcd}(b, r) \leq \operatorname{gcd}(a, b)$.
By 1 and 2, the common divisors of a and b are the same as the common divisors of b and r. So both pairs have the same gcd .

Strategies for finding $\operatorname{gcd}(a, b)$
(1) Find all factors of a and all factors of b. Then choose the largest.
(2) Use the Euclidean Algorithm (see below)

Euclidean Algorithen (By Example)

Ex Find $\operatorname{gcd}(578,442)$.
Idea: Lemma 3.
Lemma 3

$$
\begin{aligned}
578 & =1 \cdot 442+136 \\
a & =q \cdot b+r \\
442 & =3 \cdot 136+34 \\
a & =q b+r \\
136 & =4 \cdot 34+0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}(578,442)=\operatorname{gcd}(442,136) \\
& \operatorname{gcd}(442,136)=\operatorname{gcd}(136,34) \\
& \operatorname{gcd}(136,34)=\operatorname{gcd}(34,0)
\end{aligned}
$$

So

$$
\operatorname{gcd}(578,442)=\operatorname{gcd}(34,0)=34
$$

Ex Find $\operatorname{gcd}(7644,1302)$

$$
\begin{array}{ll}
7644=5 \cdot 1302+1134 & \operatorname{gcd}(7644,1302)=\operatorname{gcd}(1302,1134) \\
1302=1 \cdot 1134+168 & \operatorname{gcd}(1302,1134)=\operatorname{gcd}(1134,168) \\
1134=6 \cdot 168+126 & \operatorname{gcd}(1134,168)=\operatorname{gcd}(168,126) \\
168=1 \cdot 126+42 & \operatorname{gcd}(168,126)=\operatorname{gcd}(126,42) \\
126=3.42+0 & \operatorname{gcd}(126,42)=\operatorname{gcd}(42,0)
\end{array}
$$

So,

$$
\operatorname{gcd}(7644,1302)=\operatorname{gcd}(42,0)=42
$$

- The Euclidean Algorithm is very important computationally.
- The following theorem is very important theoretically.

Theorem 4 Suppose $a, b \in \mathbb{Z}$. Let $d=\operatorname{gcd}(a, b)$. Then there exists $x, y \in \mathbb{Z}$ such that

$$
a x+b y=d
$$

$p f$
follows from the Euclidean Algorithm as we see in the next example.

Ex we saw that $\operatorname{gcd}(7644,1302)=42$. Find x, y such that $7644 x+1302 y=42$.

Process
(1) Perform the Euclidean Algorithm

Recall:

$$
\begin{aligned}
7644 & =5 \cdot 1302+\underline{1134} \\
1302 & =1 \cdot 1134+\underline{168} \\
1134 & =6 \cdot 168+\underline{126} \\
168 & =1 \cdot 126+\underline{42} \\
126 & =3.42+0
\end{aligned}
$$

(2) Solve for the remainders

$$
\begin{aligned}
* * * \frac{1134}{} & =7644-5.1302 \\
* * \frac{168}{} & =1302-1134 \\
* \frac{126}{42} & =1134-6.168 \\
\frac{42}{} & =168-126
\end{aligned}
$$

(3) work from "bottom to top" making substitutions

$$
\begin{aligned}
42 & =168-12^{*} 6 \\
& =168-(1134-6 \cdot 168) \\
& =-1134+7.168 \\
& =-1134+7(1302-1134) \\
& =7.1302-8 \cdot 1134 \\
& =7 \cdot 1302-8(7644-5 \cdot 1302) \\
& =\frac{-8}{x} \cdot 7644+\frac{47.1302}{y} \\
x & =-8 \text { and } y=47
\end{aligned}
$$

The next 3 corollaries illustrate how Theorem 4 cam be used to prove new results.

Q: If $d \backslash a b$, must it betrue that $d \backslash a$ or $d \backslash b$?
Ex: $10 \mid 2.50$ and $10 \mid 50$
bat $10 \mid 4.25$ but 10×4 and 10×25.

Corollary \mid Let $a, b, d \in \mathbb{Z}$. If $d \backslash a b$ and $\operatorname{gcd}(d, a)=1$, then d / b.
pf
Assume

$$
\cdot d \backslash a b
$$

AND Theorem 4

$$
\text { - } \operatorname{gcd}(d, a)=1 \Longrightarrow \begin{array}{r}
\text { for sone } \\
x, y \in \mathbb{Z} .
\end{array}
$$

Thus

$$
\begin{aligned}
x d+y a=1 & \Rightarrow(x d+y a) b=b \\
& \Longrightarrow x d b+y a b=b
\end{aligned}
$$

Note that

- $d \mid x d b$ since $x d b=d(x b)$
- dlyab since dlab by hypothesis

By Lemma 2 , if $d \mid x d b$ and d) yab, then $d \mid x d b+y a b$, so $d \mid b$.

Corollary 2 Let $a, b, c \in \mathbb{Z}$. If $c \mid a$ and $c \backslash b$, then $c \mid \operatorname{gcd}(a, b)$.
pf
By Theorem 4, there exists $x, y \in \mathbb{Z}$ s.t.

$$
a x+b y=g c d(a, b)
$$

Since $c \mid a$ and $c \mid b$, c dividestle entire LHS by Lemma 2. Thus $c \backslash \operatorname{gcd}(a, b)$.

Corollary 3 Let $a, b, c \in \mathbb{Z}$. If $a \mid c$ and $b \mid c$ and $(a, b)=1$, then $a b \mid c$.
pf

$$
\text { R thisisabout } c \text {, }
$$

By Theorem 4, there exists $x, y \in \mathbb{Z}$ st.

$$
a x+b y=1 .
$$

Multiplying by c,

$$
a c x+b c y=c \text {. }
$$

Also,

$$
\begin{aligned}
& a \mid c \\
& b \mid c
\end{aligned} \Rightarrow\left\{\begin{array}{l}
c=a s) \\
c=\frac{b t}{}
\end{array} \text { for } s, t \in \mathbb{Z}\right.
$$

Thus,

$$
\begin{aligned}
& a b t x+b a s y=c \\
\Rightarrow & a b(t x+s y)=c \quad \text { with } t x+s y \in \mathbb{Z} \\
\Rightarrow & a b \mid c
\end{aligned}
$$

