Section 2 -Unique Factorization
warm-up
(1) Factor 600 into primes.
(2) Compare with neighbor -did you get the same answers?

only the order is different.
In both cases

$$
600=2^{3} \cdot 3 \cdot 5^{2}
$$

Def An integer p is called prime if $p \geqslant 2$ and the only positive divisors of p are 1 and P.

Ex Here are some primes: $2,3,5,7, \ldots, 2^{82,589,933}-1, \ldots$

$$
\begin{aligned}
& \text { largest known as } \\
& \text { of Jan. } 2020 \text {. It } \\
& \text { has } 24,862,048 \text { digits! }
\end{aligned}
$$

visually If you have n blocks, then n is prime if there are only two ways to arrange them into a rectangle.

Def The integers ± 1 are called units. The integers are divided up as follows:

$$
\{0\} \cup\{u n i t s\} \cup\{\text { primes\} } \cup \text { \{composite numbers\} }
$$

Lemma If $n \in \mathbb{Z}$ and $n \geqslant 2$, then n is divisible by some prime.
pfidea

- $n \geqslant 2 \Rightarrow$ there is a divisor of n that is larger than 1 (b/c n is a divisor of n)
- If p is the smallest divisor of n that islarger than 1, then p is prime

$$
\begin{aligned}
& t \text { this requires a } \\
& \text { small proof }
\end{aligned}
$$

Lemma 2 (Factorization) If $n \in \mathbb{Z}$ and $n \geqslant, 2$, then n can be written as a product of primes (but maybe just I prime).

Ex $\quad 6=2.3, \quad 8=2.2 .2, \quad 7=7$
pt of Lemma 2
Suppose the lemma is not true. (It's either true or not!) Then there is some integer larger than 1 that cannot be written as a product of primes.

Let m be the smallest integer larger than I that can not be written as a product of primes

Then

- m is not prime so $m=a, b$ for a, b with $1<a, b<m$.
- by our choice of m, a and b can be written as a product of primes:

$$
\begin{aligned}
& a=p_{1} \cdots p_{k} \\
& b=q_{1} \cdots q_{e}
\end{aligned} \quad p_{i}, q_{j} \text { prime }
$$

- $m=p_{1} \cdots p_{k} q_{1} \cdots q_{e}$ so m can be written as a product of primes.
conclusion: the lemma is true.

Theorem 1-Enclid There are infinitely-many primes. (But we don't know what they are, ie. no formula.)
pf
suppose the theorem is not true. Then we can list the primes as $P_{1}, P_{2}, \ldots, P_{N}$. Consider the number

$$
m=\overbrace{P_{1} \cdot P_{2} \cdots P_{N}}^{a}+1 \quad(\text { think } m=2 \cdot 3 \cdot 5+1=31)
$$

By Lemma l, wis divisible by some prime, so
that prime must be on our list. Suppose P_{k} lm for some $1 \leqslant k \leqslant N$. Notice that

- $m-\overbrace{P_{1} P_{2} \cdots P_{N}}^{a}=1$
- $p_{k} \backslash m$
- $P_{k} \mid P_{1} P_{2} \cdots P_{N}$

By Sectionl-Lemma 2, $P_{k} \mid 1$, so $P_{k}= \pm 1$. But, P_{k} is prime so $P_{k} \geqslant 2$. This is a contradiction.
conclusion: the theorem is true.

Warm-up
(a) For which values of $n \in \mathbb{Z}$ so is $n^{2}-1$ prime?
(b) Repeat for $n^{4}-1$.

Extra: Show that if $n^{k}-1$ is prime, then $n=2$.
Extra 2: Show that $n^{m}-1$ is never prime when m is composite.
Idea: $\quad n^{n}-1=n^{a b}-1=\left(n^{a}\right)^{b}-1$. Use Extra.

Finding Primes
Options:
(1) Guess and check
(2) Sieving
(1) Guess and check

Ex Is 119 prime?
If not, it hasa prime divisor.

P	2	3	5	7
is divisor of 119	N	N	N	$Y!$

$71119 \Rightarrow 119$ is NOT Prime

Ex Is 139 prime?

is divisor of 139	N	N	3	5	7	11

* suppose 139 is composite. what could its factors be?

$$
139=a \cdot b
$$

we now know $a, b \geqslant 13 \Rightarrow 139 \geqslant 13 \cdot 13=169!!$
So 139 is prime

Lemma 4 Let $n \in \mathbb{Z}^{+}$. If n is composite, then n has some prime divisor p with $p \leq \sqrt{n}$. very, Thus, if n does Not have a prime divisor useful p with $p \leqslant \sqrt{n}$, then n is prime.

Pf Assume n is composite. Thus

$$
n=a \cdot b \quad \text { with } \quad 1<a, b<n \text {. }
$$

If $a>\sqrt{n}$ AND $b>\sqrt{n}$, then $n=a b>n$, which is not true. Thus $a \leqslant \sqrt{n}$ or $b \leqslant \sqrt{n}$.

By Section 2 Lemma l, a or b has a prime factor p and thus $p \leqslant \sqrt{n}$. Without loss of generality, assume $p l a$. Then $p l a$ and $a \mid n$, so pin. \quad.

Ex Suppose n is a composite two digit number. Explain why n is divisible by one of $2,3,5$, or 7 .
$n<100 \Rightarrow n$ has a prime factor \Rightarrow largest possible Lem. 4 p with $p<10 \quad$ prime divisor is 7
(2) Sieving (Sieve of Eratosthenes)

Sieving Handout
Suppose you want to find all primes $\leqslant 100$.
Idea: Remove all composite numbers 5100 . The primes are what are left

Lem. 4

- $n \leq 100$ is composite $\Longleftrightarrow n$ has a prime divisor $p \leq 10$
- to remove composites we need only remove multiples of $2,3,5,7$.

Sieving

We want to find all of the prime numbers less than 100.

Idea: list the numbers up to 100 and remove all composite numbers and 1 . The primes will be left over.

- If $n \leq 100$, then n is composite $\Longleftrightarrow n$ has a prime divisor less that \qquad .
- So, to remove the composites less than 100 , we need only to remove multiples of $2,3,5,7$ \qquad .

Task: cross out all composite numbers, and then circle the prime numbers below.

unit

$$
\text { malt of } 2
$$

$$
\text { mult of } 3
$$

$$
\text { milt of } 5
$$

$$
\text { mull of } 7
$$

Follow up: If we wanted all prime numbers less than 400 , then we could list the numbers and remove multiples of $2,3,5,7,11,13,17,19 ; i$

$$
\int_{\text {stopat } 20} 20^{2}
$$

Back to factorization: uniqueness

Lemma 5 Let $p, a, b \in \mathbb{Z}$ with p a prime. If $p \backslash a b$, then $p \backslash a$ or $p \mid b$.
$p f$
Note that $\operatorname{gcd}(p, a)=1$ or p since it must divide p.

- If $\operatorname{gcd}(p, a)=1$, then $p \mid b$ by cor 1 of Section 1.
- If $\operatorname{gcd}(p, a)=p$, then $p \mid a$ by dat. of $g a d$.

Lemma 5 can be generalized to...
Lemma Let $p, a_{1}, \ldots, a_{k} \in \mathbb{Z}$ with p a prime. If $p \backslash a_{1} \cdot a_{2} \cdots a_{k}$, then $p \backslash a_{i}$ for some $1 \leq i \leq k$.

This leads immediately to...
Lemma 7 Let $p, q_{1}, \ldots, q_{k} \in \mathbb{Z}$ all be prime. If $p \mid q_{1} q_{2} \cdots q_{k}$, then $p=q_{i}$ for sone $1 \leqslant i \leqslant k$.

Fundamental Theorem of Arithmetic (Unique Factorization Theorem) If $n \in \mathbb{Z} \geqslant 2$, then n can bewritten as a product of primes in one and only one way (ignoring order).
pf idea
By lemma 2, n can be written as a prod. ot primes. It remains to show this cam be done only one way. Suppose

$$
n=p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s} \text { with } p_{i}, q_{i} \text { all prime }
$$

- $P_{1} \backslash$ RUS $\Rightarrow P_{1}=q_{i}$ for some $i \geqslant 1$ (Lemma 7)
- rearrange the q^{\prime} s so $P_{1}=q_{1}$

$$
-P_{1} p_{2} \cdots p_{r}=p_{1} q_{2} \cdots q_{s}
$$

- $P_{2} \backslash$ RHS $\Rightarrow P_{2}=\varepsilon_{i}$ for some $i \geqslant 2$
- rearrange so $p_{2}=\varepsilon_{2}$

$$
-p / 2 \cdots p_{r}=q_{2} \cdots q_{s}
$$

- Continue on. At the end, we find that after rearranging the q 's, we have

$$
P_{1}=\varepsilon_{1}, P_{2}=q_{2}, \ldots, P r=\varepsilon_{r}
$$

which also implies $r=S$
when factoring, we often collect multiple copies of each prime into powers. This gives the prime-power de composition.
\uparrow def. in book
Ex Find the prime-power decomp. of 600

Ex Find the prime-power decomp of 260 . Use this to find $\operatorname{gcd}(600,260)$

$$
\begin{array}{ll}
260=\underline{2}^{2} \cdot 5 \cdot 13 \\
600=\underline{2}^{3} \cdot 3 \cdot 5^{2}
\end{array} \quad \operatorname{gcd}(600,260)=2^{2} \cdot 5=40
$$

- use minimum exponents

Theorem 3 Let $m, n \in \mathbb{Z}_{>0}$. Let P_{1}, \ldots, P_{k} be the primes dividing both m and n. Then

$$
m=p_{1}^{e_{1}} \cdots p_{k}^{l_{k}} \cdot r \text { and } n=p_{1}^{s_{1}} \cdots p_{k}^{f_{k}} \cdot S
$$

and $\operatorname{gcd}(m, n)=p_{1}^{g_{1}} \cdots p_{k}^{g_{k}}$ where $g_{i}=\min \left(e_{i}, f_{i}\right)$.

Warm-up Suppose n is a square number for some m. and the only prime divisors of n are 2 and 7 . what is the smallest number n could be?

Idea: If $n=m^{2}$ and $p \mid n$, then $p \mid m$.

Ex suppose that n is a cube. Prove that every exponent in its prime power decomposition is a multiple of 3 .
we know that $n=m^{3}$ for some m.
Suppose the prime- power decomp of m is

$$
m=p_{1}^{a_{1}} \ldots p_{k}^{a_{k}} .
$$

Then,

$$
n=\left(p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}\right)^{3}=p_{1}^{3 a_{1}} \ldots p_{k}^{3 a_{k}} .
$$

This is the prime-power decomp. of n, and we can see that each exponent is a multiple of 3 .

