Section 2 - Unique Factorization

DPTIONAL

Let m be the smallest integer larger than I that can not be written as a product of primes

Then

- mis not prime so m=a,b for a,b with 1<a,b<m.
- by our choice of m, a and b <u>can</u> be written as a product of prines:
 - a = P,···Pk b = 2,···2e Pi,2; Prime
- m= P1... P22,....2e so m can be written as a product of primes.

Theorem I-Euclid There are infinitely-many primes. (But we don't know what they are, i.e. no formula.) <u>Pf</u> Suppose the theorem is not true. Then we can

list the primes as P,,P2,..., PN. Consider the number

$$m = P_1 \cdot P_2 \cdots P_N + 1$$
 (think $m = 2.3.5 + 1 = 31$)
By Lemma 1, mis divisible by some prime, so

that prime must be on our list. Suppose $P_k | m$ for some 1sks N. Notice that • $m - P_1 P_2 \cdots P_N = 1$ • $P_k | m$ • $P_k | P_1 P_2 \cdots P_N$ By Section-Lemma 2, $P_k | 1$, so $P_k = \pm 1$. But, P_k is prime so $P_k > 2$. This is a contradiction. Conclusion: the theorem is true.

 \Box

Options: () Guess and check (2) Sieving O Guess and Check

Ex Is 119 prime?
If not, it has a prime divisor.

$$\begin{array}{c|c}
P & 2 & 3 & 5 & 7\\
is pa & N & N & Y!\\
divisor & N & N & Y!\\
7 & 119 & is NoT prime
\end{array}$$

Ex Is 139 prive?

* suppose 139 is composite. what could its factors be?

 $139 = a \cdot b$ we now know $a, b > 13 \implies 139 > 13.13 = 169]]$ So 139 is prime

Lemma 4 Let $n \in \mathbb{Z}^+$. If n is composite, then n has some prime divisor p with $p \leq \sqrt{n}$, very [Thus, if n does not have a prime divisor useful p with $p \leq \sqrt{n}$, then n is prime. n=a.b with 1<a,b<n.

If a> Jn AND b> Jn, then n=ab>n, which is not true. Thus as Jn OR b & Jn. By Section 2 Lemmal, a or b has a prime factor p and thus p& Jn. without loss of generality, assume pla. Then pla and aln, SO pln. []

Ex Suppose n is a composite two digit number. Explain why n is divisible by one of 2,3,5, or 7.

• N ≤ 100 is composite (=) n has a prime divisor p ≤ 10

Len 4

 to remove composites we need only remove multiples of 2,3,5,7.

We want to find all of the prime numbers less than 100.

Idea: list the numbers up to 100 and remove all composite numbers and 1. The primes will be left over.

- If $n \leq 100$, then n is composite $\iff n$ has a prime divisor less that **IO**
- So, to remove the composites less than 100, we need only to remove multiples of 2,3,5,7

Task: cross out all composite numbers, and then circle the prime numbers below.

\times	2	3	4	5	_6_	7	-8	-9-	10
	-12-	13	4	15	16	17	18	(19)	<mark>-20</mark>
-21	-22-	23	-24-	-25	26	<u>-27</u>	-28	29	*
31	-32-	33	$\frac{34}{34}$	35	-36-	37	38	_39	40
41	<u> 42 </u>	43	-44-	45	46	47	48	-49-	\$
-51-	-52	53	4	цр Цр	4	-57-	μ. L	59	-60
61	<u>-62</u>	-63-	-64-	<u>65</u>	. 66	67	<u>-68</u> -	-69 -	-70
(71)	-72	73	74	75	76	-77-	- 78	79	-80
	-82-	83	-84	85	*	-87	***	89	-90-
-91-	. 92	-93 -	94	-95	-96	97	-98 -	-99-	100

unit mult of 2 mult of 3 mult of 5 mult of 7

Follow up: If we wanted all prime numbers less than 400, then we could list the numbers and remove multiples of 2,3,5,7,(1,13,17,19; 7) 30^{2} 10^{2} 10^{2} 10^{2} 10^{2} 10^{2}

This leads immediately to ...

Lemma 7 Let
$$P_1 2_1, \dots, 2_k \in \mathbb{Z}$$
 all be prime. If
 $P \mid 2_1 2_2 \dots 2_k$, then $p = 2_i$ for some 15 is k.

By lemma 2, n can be written as a prod. of
primes. It remains to show this can be
done only one way. Suppose

$$N = P_1 P_2 \cdots P_r = 2_1 2_2 \cdots 2_5$$
 with $P_{i_1} 2_{i_1}$ all prime
 $\cdot P_1 \setminus RHS \implies P_1 = 2i$ for some $i > 1$ (Lemma 7)
 $- rearrange the 2's so $P_1 = 2i$
 $- P_1 P_2 \cdots P_r = P_1 2_2 \cdots 2_5$
 $\cdot P_2 \setminus RHS \implies P_2 = 2i$ for some $i > 2$
 $- rearrange so $P_2 = 2i$
 $- P_2 \cdots P_r = q_2 \cdots 2_5$
 $\cdot Continue on. At the end, we
find that after rearranging the
 $2's, we have$$$$

$$P_1 = 2_1$$
, $P_2 = 2_2$, ..., $P_n = 2_r$
which also implies $r = 5$

Prime-power Decomposition

Ex Find the prime-power decomp of 260. Use this to find god (600,260)

$$260 = 2^{2} \cdot 5 \cdot 13$$

 $600 = 2^{3} \cdot 3 \cdot 5^{2}$
 40
 40
 $5 = 40$
 $5 = 40$
 $5 = 40$

Theorem 3 Let $m, n \in \mathbb{Z}_{>0}$. Let P_1, \dots, P_k be the primes dividing both m and n. Then $m = P_1^{e_1} \cdots P_k^{e_k} \cdot r$ and $n = P_1^{e_1} \cdots P_k^{e_k} \cdot S$ and $g \in d(m, n) = P_1^{e_1} \cdots P_k^{e_k}$ where $g_i = \min(e_i, f_i)$. Warm-up Suppose nis a square number for some and the only prime divisors of n ane 2 and 7. What is the smallest number n could be? I dea: If n=m² and pln, tupp.

Ex Suppose that n is a cube. Prove that
every exponent in its prime power
decomposition is a multiple of 3.
We know that
$$n = m^3$$
 for some n.
Suppose the prime-power decomp of mis
 $m = p_1^{\alpha_1} \dots p_k^{\alpha_k}$.

Then, $n = (p_1^{a_1} \cdots p_k^{a_k})^3 = p_1^{3a_1} \cdots p_k^{3a_k}$. This is the prime-power decomp. of n, and we can see that each exponent is a multiple of 3.