Section 3-Linear Diophatine Eqs.

WS-02 Intro Linear Dioph. (see next page)

Lingering question: were there other solutions
Important takeaway: If there is one integer Solution, then there are infinitely many (ignoring additional restrictions).

So, one integer solution $\left(x_{0}, y_{0}\right)$ to $a x+b y=c$ yielded s-many integer solutions. How exactly?

$$
a x+b y=c \longleftrightarrow y=-\frac{a}{b}+c \quad(i f b \neq 0)
$$

omitted in book,
but it is always implied!!

Lemma I Let $a, b, c \in \mathbb{Z}$. If $\left(x_{0}, y_{0}\right)$ is an integer solution of $a x+b y=c$, then so is

$$
\begin{aligned}
& x=x_{0}+b t \\
& y=y_{0}-a t
\end{aligned} \longrightarrow\left(x_{0}+b t, y_{0}-a t\right) \text { for all } t \in \mathbb{Z} .
$$

02 - Introduction to linear Diophantine equations

It's my first day selling burgers and burritos on the beach. At end of my shift, I sold $\$ 107$ of food. Then I remember that my boss wanted me to keep track of how many of each I sold. All I remember is that I sold more burritos than burgers. Can you help me? Also, burgers are $\$ 5$ and burritos are $\$ 7$.

1. Let x denote the number of burgers sold and y the number of burritos sold. Based on the story, what equation do you want to solve? What are the restrictions on the variables?

$$
\begin{aligned}
& 5 x+7 y=107 \quad \\
& 0 \leq x \leqslant y
\end{aligned}
$$

2. Graph the equation you found in the previous part.

$$
\begin{aligned}
& 5 x+7 y=107 \\
& y=-\frac{5 / 7}{} x+107 / 7 \\
& \frac{\text { key observation }}{\text { on the graph }}=(20,1) \text { is } \\
& \text { point: }(20,1) \\
& \text { Slope: }-5 / 7
\end{aligned}
$$

3. First, ignore the fact that I sold more burritos than burgers. Find as many solutions as possible to your equation.

$$
\begin{aligned}
(20,1),(13,6),(6,11),(-1,16), \ldots & \text { infinitely-many more } \\
& \text { if variables can be } \\
& \text { negative }
\end{aligned}
$$

4. Now, make use of the fact that I sold more burritos than burgers to determine how many burritos and burgers I sold? Why? Could there possibly be a different answer?
burgers: $x=6$
burritos: $y=11$

Between the se integer solutions
there do not seem to be other integer solutions, so $(6,11)$ seems to be the only one with $0 \leqslant x<y$.
pt
We areassuming $a x_{0}+b y_{0}=c$. Observe that

$$
\begin{aligned}
a\left(x_{0}+b t\right)+b\left(y_{0}-a t\right) & =a x_{0}+a y_{0} t+b x_{0}-b a t \\
& =a x_{0}+b x_{0} \\
& =c
\end{aligned}
$$

So, $x=x_{0}+b t, y=y_{0}-a t$ is also a solution.

Ex Find ∞-many integer solutions to $5 x+7 y=107$, if possible. trial and error for now
(1) Find 1 solution: $x=20, y=1$ is a solution since

$$
5 \cdot 20+7.1=107
$$

(2) Use Lam 1:

$$
x=20+7 t, y=1-5 t \quad \text { for } t \in \mathbb{Z}
$$

For example: ..., $(13,6),(20,1),(27,-4),(34,-9), \ldots$

$$
t=-1 \quad t=0 \quad t=1 \quad t=2
$$

Ex Find co-many integer solutions to $6 x+8 y=107$, if possible.

No solutions. $2 \mid$ LHS but 2 X RHS

Ex Find ∞-many integer solutions to $6 x+9 y=107$, if possible.

No solutions. 3 LLHS but $3 x$ RHS

Lemma 2 Let $a, b, c \in \mathbb{Z}$. Then

$$
\left.\begin{aligned}
& \text { it has } \\
& \text { c- many }
\end{aligned} \Longleftrightarrow \begin{aligned}
& a x+b y=c \text { has } \\
& \text { an integer solution }
\end{aligned} \Longleftrightarrow \operatorname{gcd}(a, b) \right\rvert\, c
$$ integer solutions

$p-$
Let $d=\operatorname{gcd}(a, b)$.
(1) Assume $a x+b y=c$ has an integer solution $\left(x_{0}, y_{0}\right)$. Then $a x_{0}+b y_{0}=c$. Since $d \mid a$ and $d|b, d| c$.
(2) Assume $d \mid c$. Then $c=m d$ for some $m \in \mathbb{Z}$.

Theorem $4 \Longrightarrow a x_{0}+b y_{0}=d$ for some $x_{0}, y_{0} \in \mathbb{Z}$
section 1

$$
\Rightarrow a\left(m x_{0}\right)+b\left(m y_{0}\right)=m d=c
$$

$\Longrightarrow x=m x_{0}, y=m y_{0}$ is an integer Solution to $a x+b y=c$

Summary so far about $a x+b y=c$:
$\left.\begin{aligned} & \text { it has co-many } \\ & \text { integer solutions }\end{aligned} \Longleftrightarrow \begin{aligned} & \text { it has one } \\ & \text { integer solution }\end{aligned} \Longleftrightarrow \operatorname{gcd}(a, b) \right\rvert\, c$

But, we have not determined how to find all solutions.

If $\left(x_{0}, y_{0}\right)$ is a solution to $6 x+8 y=110$, is it true that every solution is of the form

$$
\begin{aligned}
& x=x_{0}+8 t \\
& y=y_{0}-6 t
\end{aligned}
$$

what is the slope?

$$
-\frac{6}{8}=-\frac{3}{4}
$$

need to reduce the equation first:

$$
6 x+8 y=110 \rightarrow 3 x+4 y=55
$$

Ruse this one

Strategy Let $a, b, c \in \mathbb{Z}$. Suppose you want all integer solutions to $a x+b y=c$. Let $d=\operatorname{gcd}(a, b)$.

All solutions:

$$
\begin{aligned}
& d \not c c \\
& \text { No } \\
& \text { check if } \\
& \text { doc } \\
& \overrightarrow{d l c} \\
& \text { Reduce: divide } \\
& \text { through by d } \\
& a^{\prime} x+b^{\prime} y=c^{\prime} \\
& a^{\prime}=\frac{a}{d}, b^{\prime}=\frac{b}{d}, c^{\prime}=\frac{c}{d}
\end{aligned}
$$

$$
\begin{aligned}
& x=x_{0}+b^{\prime} t \\
& y=y_{0}-a^{\prime} t
\end{aligned}
$$

$$
\uparrow
$$

Find one solution to the equation

$$
b^{\prime}=\frac{b}{d}
$$ $\left(x_{0}, y_{0}\right)$

$$
a^{\prime}=\frac{a}{d}
$$

But how do we know that we get all solutions?

Lemma 3 Let $a, b, c \in \mathbb{Z}$. Let $\left(x_{0}, y_{0}\right)$ be any integer solution to $a x+b y=c$. If $\operatorname{gcd}(a, b)=1$, then all integer solutions are given by

$$
x=x_{0}+b t \quad t \in \mathbb{Z} .
$$

this means the equation is reduced.
pf Let (r, s) be any integer solution. Then

$$
\begin{aligned}
& a r+b s=c \\
& a x_{0}+b y_{0}=c \\
\Longrightarrow & a r-a x_{0}+b s-b y_{0}=0 \\
\Longrightarrow & a\left(r-x_{0}\right)+b\left(s-y_{0}\right)=0 \\
\Longrightarrow & a\left(r-x_{0}\right)=-b\left(s-y_{0}\right) \\
\Longrightarrow & a\left(r-x_{0}\right)=b\left(y_{0}-s\right) \\
\Longrightarrow & a \mid b\left(y_{0}-s\right) \quad c \cdot(a, b)=1 \\
\Longrightarrow & a \mid\left(y_{0}-s\right) \\
\Longrightarrow & y_{0}-s=a \cdot t \quad \text { for some } t \in \mathbb{Z} \\
\Longrightarrow & a\left(r-x_{0}\right)=b a \cdot t \\
\Longrightarrow & r-x_{0}=b t \\
\Longrightarrow & r=x_{0}+b t \\
\Longrightarrow & s=y_{0}-a t
\end{aligned}
$$

Ex Find all integer solutions to $-8 x+20 y=148$.
(1) Compute $\operatorname{gcd}(a, b)$.

$$
\operatorname{gcd}(-8,20)=4
$$

(2) Does $\operatorname{gcd}(a, b)$ divide C ?

Yes! $148=4.37$
So there are solutions - keep going.
(3) Reduce: divide through by $\operatorname{gcd}(a, b)$. divide through by 4

$$
-2 x+5 y=37
$$ reduced equation

(4) Find one solution

Hamm... $x=-1, y=7$ (guess \&̀ check)
(5) Write down all solutions (using reduced eq.) reduced equation
so

$$
\begin{aligned}
& x=-1+5 t \\
& y=7+2 t
\end{aligned} \quad t \in \mathbb{Z}
$$

Warm-up Revisit Burger 'Burrito problem but now burgers are $\$ 3$ and burritos are $\$ 7$. I sold \$108 in total and I know I sold an even number of burgers. What are the possibilities for the number of each I sold (see WS-02) Hint: 108 is divisible by 3 .

Let $x=$ *burgers sold

$$
y=\text { \#urritos sold }
$$

$$
3 x+7 y=108 \quad x, y \in \mathbb{Z}
$$

and x is even, $x, y \geqslant 0$
(1) $\operatorname{gcd}(3,7)=1$
(2) $1 \mid 108$ so there are solutions
(3) equation is already reduced
(4) Find one solution:

$$
\begin{aligned}
108=3 \cdot 36 & \Rightarrow 3 \cdot 36+7 \cdot 0=108 \\
& \Rightarrow \quad \begin{array}{l}
x=36 \\
y=0
\end{array} \text { is a solution }
\end{aligned}
$$

(5) Find all solutions

$$
\begin{aligned}
& x=x_{0}+b t \\
& y=y_{0}-a t
\end{aligned} \Longrightarrow \begin{aligned}
& x=36+7 t \\
& y=0-3 t
\end{aligned} \quad t \in \mathbb{Z}
$$

(6) Answer the question

$\left.$| t | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | (x, y) |
| :--- |
| $(43,-3)$ |
| $(36,0)$ |$(29,3)|(22,6)|(15,9)|(8,12)|(1,15) \right\rvert\,(-6,18)$.

$$
(36,0),(22,6),(8,12)
$$

