Math 108—Homework 03

Due: Tuesday February 14 \heartsuit

NAME _

Directions: please print this page, and put your solutions in the space provided.

1. Prove by contraposition: Let $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.

2. Prove: if x and y are rational numbers, then x + y and x - y are also rational. Remember the definition of rational: a number z is rational if there exists $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $z = \frac{a}{b}$. **3.** Prove by <u>contradiction</u>: If x is a rational number and y is an irrational number, then x + y is irrational. *Hint:* let z = x + y, and assume, towards a contradiction, that z is rational. Now consider using problem 2.

4. Prove by contraposition: Let x be a positive real number. If x is irrational, then \sqrt{x} is also irrational.