Math 108-Homework 03

Due: Tuesday February 140

Directions: please print this page, and put your solutions in the space provided.

1. Prove by contraposition: Let $a \in \mathbb{Z}$. If a^{2} is not divisible by 4 , then a is odd.
2. Prove: if x and y are rational numbers, then $x+y$ and $x-y$ are also rational.

Remember the definition of rational: a number z is rational if there exists $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $z=\frac{a}{b}$.
3. Prove by contradiction: If x is a rational number and y is an irrational number, then $x+y$ is irrational. Hint: let $z=x+y$, and assume, towards a contradiction, that z is rational. Now consider using problem 2.
4. Prove by contraposition: Let x be a positive real number. If x is irrational, then \sqrt{x} is also irrational.

