Math 108-Homework 05

Due: Tuesday February 28

Directions: please print this page, and put your solutions in the space provided.

1. Let $X=\{\pi, e,\{1,2\}\}$, and let $\mathcal{P}(X)$ denote the power set of X. Determine if each is True or False. You do not need to justify your answers, but make sure to double check them.
(a) $\pi \in X$
(e) $\{1,2\} \subseteq X$
(b) $\{\pi\} \in X$
(f) $\{\pi, e\} \in \mathcal{P}(X)$
(c) $\{\pi\} \subseteq X$
(g) X contains 4 elements.
(d) $2 \in X$
(h) $\mathcal{P}(X)$ contains 8 elements
2. Let $A=\{1,2\}$. Give an example (if one exists) of sets B and C such that the following are true. If no example exists, simply write "not possible."
(a) $A \subseteq B, A \subseteq C$, and $B \nsubseteq C$
(c) $A \subseteq B, B \subseteq C$, and $C \subseteq A$
(b) $A \subseteq B, A \nsubseteq C$, and $B \subseteq C$
(d) $A \in B, A \nsubseteq B, A \subseteq C, B \subseteq C$
3. Let $\mathcal{P}(\mathbb{Z})$ denote the power set of \mathbb{Z}. Give an example of each of the following:
(a) an $A \in \mathcal{P}(\mathbb{Z})$ where A contains 3 elements.
(c) an $A \subseteq \mathcal{P}(\mathbb{Z})$ where A contains 3 elements.
(b) an $A \in \mathcal{P}(\mathbb{Z})$ where A contains infinitely many elements.
(d) an $A \subseteq \mathcal{P}(\mathbb{Z})$ where A contains infinitely many elements.
4. For each set, find a universe U and a formula $P(x)$ so that the given set is equal to $\{x \in U: P(x)\}$. I did the first one for you.
(a) $A=\{\ldots,-9,-4,1,6,11, \ldots\}$

$$
\text { Possible answer: } \quad A=\{x \in \mathbb{Z}: \exists m \in \mathbb{Z}(x=1+5 m)\}
$$

(b) $B=\{4,9,16,25,36, \ldots\}$
(c) $C=\{$ all rational numbers that are not integers $\}$
(d) $D=\{\pi, e, \sqrt{2}\}$
5. For $a \in \mathbb{Z}$, define $a+5 \mathbb{Z}=\{x \in \mathbb{Z}: \exists m \in \mathbb{Z}(x=a+5 m)\}$.

- Notice that $0+5 \mathbb{Z}$ is the same as $5 \mathbb{Z}$, as we defined it in class.
- For another example, $2+5 \mathbb{Z}=\{\ldots,-8,-3,2,7,12, \ldots\}$.

Prove: for all $a, b \in \mathbb{Z}$, if $(a-b) \in 5 \mathbb{Z}$, then $a+5 \mathbb{Z}=b+5 \mathbb{Z}$.

