MATH 108—Homework 05

Due: Tuesday February 28

NAME _

Directions: please print this page, and put your solutions in the space provided.

1. Let $X = \{\pi, e, \{1, 2\}\}$, and let $\mathcal{P}(X)$ denote the power set of X. Determine if each is **True** or **False**. You do not need to justify your answers, but make sure to double check them.

(a)
$$\pi \in X$$
 (e) $\{1,2\} \subseteq X$

- (b) $\{\pi\} \in X$ (f) $\{\pi, e\} \in \mathcal{P}(X)$
- (c) $\{\pi\} \subseteq X$ (g) X contains 4 elements.
- (d) $2 \in X$ (h) $\mathcal{P}(X)$ contains 8 elements
- **2.** Let $A = \{1, 2\}$. Give an example (if one exists) of sets B and C such that the following are true. If no example exists, simply write "not possible."

(a)
$$A \subseteq B, A \subseteq C$$
, and $B \nsubseteq C$ (c) $A \subseteq B, B \subseteq C$, and $C \subseteq A$

(b)
$$A \subseteq B, A \nsubseteq C$$
, and $B \subseteq C$ (d) $A \in B, A \nsubseteq B, A \subseteq C, B \subseteq C$

- **3.** Let $\mathcal{P}(\mathbb{Z})$ denote the power set of \mathbb{Z} . Give an example of each of the following:
 - (a) an $A \in \mathcal{P}(\mathbb{Z})$ where A contains 3 elements. (c) an $A \subseteq \mathcal{P}(\mathbb{Z})$ where A contains 3 elements.
 - (b) an $A \in \mathcal{P}(\mathbb{Z})$ where A contains infinitely many (d) an $A \subseteq \mathcal{P}(\mathbb{Z})$ where A contains infinitely many elements.

4. For each set, find a universe U and a formula P(x) so that the given set is equal to $\{x \in U : P(x)\}$. I did the first one for you.

(a) $A = \{\ldots, -9, -4, 1, 6, 11, \ldots\}$

POSSIBLE ANSWER: $A = \{x \in \mathbb{Z} : \exists m \in \mathbb{Z} (x = 1 + 5m)\}$

- **(b)** $B = \{4, 9, 16, 25, 36, \ldots\}$
- (c) $C = \{ \text{all rational numbers that are not integers} \}$

(d) $D = \{\pi, e, \sqrt{2}\}$

- 5. For $a \in \mathbb{Z}$, define $a + 5\mathbb{Z} = \{x \in \mathbb{Z} : \exists m \in \mathbb{Z} (x = a + 5m)\}.$
 - Notice that $0 + 5\mathbb{Z}$ is the same as $5\mathbb{Z}$, as we defined it in class.
 - For another example, $2 + 5\mathbb{Z} = \{\dots, -8, -3, 2, 7, 12, \dots\}$.

Prove: for all $a, b \in \mathbb{Z}$, if $(a - b) \in 5\mathbb{Z}$, then $a + 5\mathbb{Z} = b + 5\mathbb{Z}$.