MATH 108—Homework 06

Due: Tuesday March 04

NAME _

Directions: please print this page, and put your solutions in the space provided.

- 1. The universe is Z. Let 2Z = {all even integers}, Z⁺ = {all positive integers} and Z⁻ = {all negative integers}. Note that 0 is not positive and not negative. Give an example (if one exists) of each of the following; if no example exists, simply write "not possible."
 - (a) an $x \in (2\mathbb{Z} \mathbb{Z}^+)$ (c) an $x \in ((\mathbb{Z}^- \cap \mathbb{Z}^+)^c \cap \{-1, 0, 1\})$
 - (b) an $x \in (\mathbb{Z}^{-} 2\mathbb{Z})$ (d) an $x \in (2\mathbb{Z} (2\mathbb{Z} \mathbb{Z}^{-}))$
 - (e) an $x \in ((2\mathbb{Z})^c \cap \{a \in \mathbb{Z} : \exists m \in \mathbb{Z} (a = 2^m)\})$
 - (f) an $x \in (\mathbb{Z}^- \cap \{a \in \mathbb{Z} : [\forall m \in \mathbb{Z}(am = a)] \lor [\forall m \in \mathbb{Z}(am = -a)]\})$
- **2.** Let $A = \{1, 2, 3\}$. Give an example (if one exists) of sets B and C such that the following are true. If no example exists, simply write "not possible."
 - (a) $C \subseteq A \cup B, A \cap B \notin C$ (c) $A \cap B \subseteq C, A \cap C \subseteq B, A = B \cup C$
 - (b) B A = C, A is disjoint from B (d) $A \subseteq B$, $C A = \emptyset$, $C B \neq \emptyset$
- **3.** Prove or disprove: for all sets A, B, and C, if $(A \cup C) \subseteq (B \cup C)$, then $A \subseteq B$.

4. Prove or disprove: for all sets A, B, and C, (A - B) - C = (A - C) - (B - C).

5. Prove: for all $a, b \in \mathbb{Z}$, the sets $a + 5\mathbb{Z}$ and $b + 5\mathbb{Z}$ are either equal or disjoint.

Hint: if $a + 5\mathbb{Z}$ and $b + 5\mathbb{Z}$ are not disjoint, then there exists some $x \in (a + 5\mathbb{Z}) \cap (b + 5\mathbb{Z})$. Now, use this to prove that the sets are equal. (Earlier results may be very helpful.)