Math 108—Homework 07

Due: Thursday March 16

NAME _

Directions: please print this page, and put your solutions in the space provided.

- 1. Let $A = \{1, 2, 3\}$. Give an example (if one exists) of sets B, C, and D such that the following are true. If no example exists, simply write "not possible."
 - (a) $D \subseteq A \times A, |D| = 4$ (c) $C \times C \subseteq A \times B, |A \times B| = 15$
 - (b) $D \subseteq A \times A, D \subseteq A$ (d) $C \times C \subseteq A \times B, |C \times C| = 15$
- **2.** Let $\mathcal{B} = \{B_n : n \in \mathbb{Z}\}$ where $B_n = (n, n+1)$; B_n is an interval of *real* numbers.
 - (a) Find $B_0 \cup B_1$. (b) Find $\bigcup_{B \in \mathcal{B}} B$. (c) Find $\bigcap_{B \in \mathcal{B}} B$.

- **3.** Let $\mathcal{A} = \{A_n : n \in \mathbb{N}^+\}$ where $A_n = (-n, \frac{1}{n})$; A_n an interval of *real* numbers.
 - (a) Find $A_1 \cap A_2$. (b) Find $\bigcup_{A \in \mathcal{A}} A$. (c) Find $\bigcap_{A \in \mathcal{A}} A$.

- 4. Let $C = \{k\mathbb{Z} : k \in \mathbb{Z} \text{ with } k \ge 2\}$ where $k\mathbb{Z} = \{x \in \mathbb{Z} : \exists m \in \mathbb{Z} (x = km)\}.$
 - (a) Find $2\mathbb{Z} \cap 3\mathbb{Z}$. (b) Find $\bigcup_{C \in \mathcal{C}} C$. (c) Find $\bigcap_{C \in \mathcal{C}} C$.

5. Let $X = \{1, 2, 3, 4, \dots, 20\}$. Give an example of each of the following:

(a) a family
$$\mathcal{A}$$
 of subsets of X such that $\bigcup_{A \in \mathcal{A}} A = X$ and $\bigcap_{A \in \mathcal{A}} A = \{1\}$.

(b) a family \mathcal{B} of consisting of **four pairwise disjoint** subsets of X such that $\bigcup_{B \in \mathcal{B}} B = X$.

6. Give an example of each of the following:

(a) a family
$$\mathcal{A}$$
 of open intervals in \mathbb{R} such that $\bigcup_{A \in \mathcal{A}} A = \mathbb{R}$ and $\bigcap_{A \in \mathcal{A}} A = [-2, 2]$.

(b) a family \mathcal{B} of consisting of **infinitely many pairwise disjoint intervals** of \mathbb{R} such that $\bigcup_{B \in \mathcal{B}} B = \mathbb{R}$.

7. **Prove:** $B \cap \bigcup_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} (B \cap A).$

 $The \ right hand \ side \ is \ a \ little \ confusing. \ This \ is \ what \ it \ means: \ \bigcup_{A \in \mathcal{A}} (B \cap A) = \{x : x \in B \cap A \ for \ some \ A \in \mathcal{A}\}.$