Math 108—Homework 07

Due: Thursday March 16

Directions: please print this page, and put your solutions in the space provided.

1. Let $A=\{1,2,3\}$. Give an example (if one exists) of sets B, C, and D such that the following are true. If no example exists, simply write "not possible."
(a) $D \subseteq A \times A,|D|=4$
(c) $C \times C \subseteq A \times B,|A \times B|=15$
(b) $D \subseteq A \times A, D \subseteq A$
(d) $C \times C \subseteq A \times B,|C \times C|=15$
2. Let $\mathcal{B}=\left\{B_{n}: n \in \mathbb{Z}\right\}$ where $B_{n}=(n, n+1) ; B_{n}$ is an interval of real numbers.
(a) Find $B_{0} \cup B_{1}$.
(b) Find $\bigcup_{B \in \mathcal{B}} B$.
(c) Find $\bigcap_{B \in \mathcal{B}} B$.
3. Let $\mathcal{A}=\left\{A_{n}: n \in \mathbb{N}^{+}\right\}$where $A_{n}=\left(-n, \frac{1}{n}\right) ; A_{n}$ an interval of real numbers.
(a) Find $A_{1} \cap A_{2}$.
(b) Find $\bigcup_{A \in \mathcal{A}} A$.
(c) Find $\bigcap_{A \in \mathcal{A}} A$.
4. Let $\mathcal{C}=\{k \mathbb{Z}: k \in \mathbb{Z}$ with $k \geq 2\}$ where $k \mathbb{Z}=\{x \in \mathbb{Z}: \exists m \in \mathbb{Z}(x=k m)\}$.
(a) Find $2 \mathbb{Z} \cap 3 \mathbb{Z}$.
(b) Find $\bigcup_{C \in \mathcal{C}} C$.
(c) Find $\bigcap_{C \in \mathcal{C}} C$.
5. Let $X=\{1,2,3,4, \ldots, 20\}$. Give an example of each of the following:
(a) a family \mathcal{A} of subsets of X such that $\bigcup_{A \in \mathcal{A}} A=X$ and $\bigcap_{A \in \mathcal{A}} A=\{1\}$.
(b) a family \mathcal{B} of consisting of four pairwise disjoint subsets of X such that $\bigcup_{B \in \mathcal{B}} B=X$.
6. Give an example of each of the following:
(a) a family \mathcal{A} of open intervals in \mathbb{R} such that $\bigcup_{A \in \mathcal{A}} A=\mathbb{R}$ and $\bigcap_{A \in \mathcal{A}} A=[-2,2]$.
(b) a family \mathcal{B} of consisting of infinitely many pairwise disjoint intervals of \mathbb{R} such that $\bigcup_{B \in \mathcal{B}} B=\mathbb{R}$.
7. Prove: $B \cap \bigcup_{A \in \mathcal{A}} A=\bigcup_{A \in \mathcal{A}}(B \cap A)$.

The right-hand side is a little confusing. This is what it means: $\bigcup_{A \in \mathcal{A}}(B \cap A)=\{x: x \in B \cap A$ for some $A \in \mathcal{A}\}$.

