Math 108-Homework 08

Due: Thursday April 6

Directions: please print this page, and put your solutions in the space provided.

1. Consider the relation R on $\{-1,0,1,2,3,6,9\}$ defined by $x R y \Longleftrightarrow x^{2}=y$.
(a) Write R as a list of ordered pairs.
(b) Write R^{-1} as a list of ordered pairs.
(c) Draw the graph of R.
(d) Draw the digraph associated to R.
2. Consider the relation R on \mathbb{Z}^{+}defined by $x R \Longleftrightarrow$ " x divides y."
(a) Find the set of all y such that $2 R y$.
(c) Find the set of all x such that $x R 30$.
(b) Find the set of all y such that $5 R y$.
(d) Find the set of all x such that $x R 17$.
3. Consider the following relations on \mathbb{Z} :

- $R=\{(-1,1),(2,0),(3,3),(-1,0),(3,-1)\}$
- $S=\{(0,0),(3,-1),(0,-7),(1,1)\}$
(a) Find $S \circ R$.
(c) Find $R \circ R$.
(b) Find $R \circ S$.
(d) Find $R^{-1} \circ R$.

4. Prove that if A is a set and R is a relation on A, then the relation S defined by $S=R \cup R^{-1}$ is symmetric.
5. Let f_{n} be the $n^{\text {th }}$ Fibonacci number. Recall that the Fibonacci numbers are defined by

$$
f_{1}=1, f_{2}=1 \text {, and } f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2 .
$$

Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ for all $n \geq 1$.

