Math 108-Homework 09

Due: Thursday April 13

Directions: please print this page, and put your solutions in the space provided.

1. Determine if each of the following relations are reflexive, symmetric, or transitive.

- If you believe the relation has a property, you can just say so, without proof.
- If you believe the relation does not have a property, give an example showing that the property fails.
(a) The relation R on \mathbb{R} defined by $x R y \Longleftrightarrow|x-y|<1$.
(b) The relation R on \mathbb{R} defined by $x R \Longleftrightarrow \exists z \in \mathbb{R}$ such that $x-y=z^{2}$.
(c) The relation R on \mathbb{Z} defined by $x R y \Longleftrightarrow x^{2}+y^{2}$ is even.

2. Determine if P is a partition of A.

- If you believe that P is a partition, you can just say so, without proof.
- If you believe that P is not a partition, explain why not.
(a) $A=\mathbb{R}^{+}, P=\left\{A_{k}: k \in \mathbb{Z}^{+}\right\}$where A_{k} is the interval $A_{k}=\left(\frac{1}{k}, k\right)$.
(b) $A=\mathbb{R} \times \mathbb{R}, P=\left\{A_{k}: k \in \mathbb{R}\right\}$ where $A_{k}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y+x=k\}$.

3. Notice that every $x \in \mathbb{Z}^{+}$can be written as $x=2^{k} n$ where n is an odd number. This is saying that 2 appears k-times in the prime factorization of x. Define $\nu(x)=k$. (Just to check, $\nu(4)=2$ and $\nu(60)=\nu\left(2^{2} \cdot 3 \cdot 5\right)=2$.) Now define a relation R on \mathbb{Z}^{+}by $x R y \Longleftrightarrow \nu(x)=\nu(y)$, and notice that R is an equivalent relation.
(a) List five different elements in the equivalence class of 4 . (Note that we already saw $4 R 60$.)
(b) Find an element less than 10 in the equivalence class of 168.
4. Make the following computations in \mathbb{Z}_{7}. Write your answer as x with $0 \leq x \leq 6$. Show your work!
(a) $7+14+21+28+35+42+49(\bmod 7)$
(b) $2^{3}-3^{2}(\bmod 7)$
(c) $8^{12345}(\bmod 7)$
(d) $6^{12345}(\bmod 7)$
5. Solve the equation $2 x=-1$ in \mathbb{Z}_{7}.
