MATH 108—Homework 09

Due: Thursday April 13

NAME _

Directions: please print this page, and put your solutions in the space provided.

- 1. Determine if each of the following relations are reflexive, symmetric, or transitive.
 - If you believe the relation has a property, you can just say so, without proof.
 - If you believe the relation does not have a property, give an example showing that the property fails.
 - (a) The relation R on \mathbb{R} defined by $x R y \iff |x y| < 1$.

(b) The relation R on \mathbb{R} defined by $x R y \iff \exists z \in \mathbb{R}$ such that $x - y = z^2$.

(c) The relation R on Z defined by $x R y \iff x^2 + y^2$ is even.

- **2.** Determine if P is a partition of A.
 - If you believe that P is a partition, you can just say so, without proof.
 - If you believe that P is not a partition, explain why not.
 - (a) $A = \mathbb{R}^+$, $P = \{A_k : k \in \mathbb{Z}^+\}$ where A_k is the interval $A_k = (\frac{1}{k}, k)$.

(b) $A = \mathbb{R} \times \mathbb{R}, P = \{A_k : k \in \mathbb{R}\}$ where $A_k = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y + x = k\}.$

- **3.** Notice that every $x \in \mathbb{Z}^+$ can be written as $x = 2^k n$ where *n* is an odd number. This is saying that 2 appears *k*-times in the prime factorization of *x*. Define $\nu(x) = k$. (Just to check, $\nu(4) = 2$ and $\nu(60) = \nu(2^2 \cdot 3 \cdot 5) = 2$.) Now define a relation *R* on \mathbb{Z}^+ by $x R y \iff \nu(x) = \nu(y)$, and notice that *R* is an equivalent relation.
 - (a) List five different elements in the equivalence class of 4. (Note that we already saw 4 R 60.)
 - (b) Find an element less than 10 in the equivalence class of 168.
- 4. Make the following computations in Z₇. Write your answer as x with 0 ≤ x ≤ 6. Show your work!
 (a) 7 + 14 + 21 + 28 + 35 + 42 + 49 (mod 7)

(b) $2^3 - 3^2 \pmod{7}$

(c) $8^{12345} \pmod{7}$

(d) $6^{12345} \pmod{7}$

5. Solve the equation 2x = -1 in \mathbb{Z}_7 .