Math 108-Homework 11

Due: Thursday May 4

Directions: please print this page, and put your solutions in the space provided.

1. Either provide an example of a function which satisfies the given description, or if no such example exists, briefly explain why not.

Hint: only three of them are "not possible."
(a) A function $f:\{a, b, c, d\} \rightarrow \mathbb{Z}_{3}$ such that f is onto \mathbb{Z}_{3}.
(b) A function $f:\{a, b, c, d\} \rightarrow \mathbb{Z}_{3}$ such that f is one-to-one.
(c) A function $f:(-\infty, 2] \rightarrow[-2, \infty)$ such that f is an injection.
(d) A function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$such that f is one-to-one and onto \mathbb{R}^{+}.
(e) A function $f: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ such that f is an injection but not a surjection.
(f) A function $f: \mathbb{Z} \rightarrow 5 \mathbb{Z}$ such that f is onto $5 \mathbb{Z}$.
(g) A function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{5}$ such that f is one-to-one.
(h) A function $f: \mathbb{Z}^{+} \rightarrow\left(\mathbb{Z}^{+}-\{1\}\right)$ such that f is an injection and a surjection.
(i) A function $f: \mathbb{Z} \rightarrow \mathbb{N}$ such that f is one-to-one and onto \mathbb{N}. (Please include 0 in \mathbb{N}, so $\mathbb{N}=\{0,1,2 \ldots\}$.) Hint: it is possible! One option is to create a piecewise defined function of the following form.

$$
f(n)= \begin{cases}0 & \text { if } n=0 \\ ? & \text { if } n \text { is positive } \\ ? & \text { if } n \text { is negative }\end{cases}
$$

