MATH 108—WRITING ASSIGNMENT 04

Due: Friday February 17—2:00 PM

Get the template I made for this assignment. (I also started some proofs for you.) Here's how to do it:

- Team Member 1: Go to https://www.sharelatex.com, and make sure you are logged in.
- Team Member 1: In a new window, go here:

https://www.sharelatex.com/project/58a144d46c4adabf41897e03

- Team Member 1: Click on the menu icon (upper-left corner 3 horizontal lines); select "Copy Project"
- **Team Member 1:** When prompted for a name, choose something like "Math 108 Assignment 04" and click "Copy"
- Team Member 1: When this completes you will be back in your own workspace (instead of mine).
- **Team Member 1:** Click on the share icon (upper-right 5 headed beast). Enter your team member's email address, make sure they "can edit" it, and "Share."
- Team Member 1 and 2: After solving the problems (possibly by yourself), work together to make a beautiful write up.
- Team Member 1 or 2: Email me (or print and turn in) one copy of your final draft.

The problems are below.

- 1. Let $x, y \in \mathbb{R}$. Prove by contraposition that if xy is irrational, then either x or y is irrational.
- 2. Let $a, b \in \mathbb{Z}$. Prove that if there exist $m, n \in \mathbb{Z}$ such that am + bn = 1, then the only common divisors of a and b are ± 1 .

In other words, assume that there exist $m, n \in \mathbb{Z}$ such that am + bn = 1, and prove that for all $c \in \mathbb{Z}$, if c divides both a and b, then $c = \pm 1$.

3. Prove that there does *not* exist a 2×2 matrix A with entries from \mathbb{R} such that $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Hint: try a proof by <u>contradiction</u>. Assume that there does exist some $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Now compute A^2 , and try to find a contradiction.