Math 108-Writing Assignment 05

Due: Friday February 24-3:00 PM

Get the template for this assignment. Here's how to do it:

- Team Member 1: Go to https://www.sharelatex.com, and make sure you are logged in.
- Team Member 1: In a new window, go here:
https://www.sharelatex.com/project/58aa58946bd8214e2cd1d40d
- Team Member 1: Click on the menu icon (upper-left corner - 3 horizontal lines); select "Copy Project"
- Team Member 1: When prompted for a name, choose something like "Math 108 - Assignment 04" and click "Copy"
- Team Member 1: When this completes you will be back in your own workspace (instead of mine).
- Team Member 1: Click on the share icon (upper-right - 5 headed beast). Enter your team member's email address, make sure they "can edit" it, and "Share."
- Team Member 1 and 2: After solving the problems (possibly by yourself), work together to make a beautiful write up.
- Team Member 1 or 2: Email me (or print and turn in) one copy of your final draft.

The problems are below.

1. Let $x, y \in \mathbb{Z}$. Prove that if 8 does not divide $x^{2}-1$, then x is even.

Hint: try a proof by contraposition.
2. Prove that if p is a prime number and $p \neq 3$, then 3 divides $p^{2}+2$.

Hint: when p is divided by 3 , the remainder is either 0,1 , or 2 ; that is, for some $k \in \mathbb{Z}, p=3 k p=3 k+1$, or $p=3 k+2$. Consider a proof by cases.
3. Let I_{n} be the $n \times n$ identity matrix. If $X=\left\{A \in M_{n \times n}: A^{2}=I_{n}\right\}$ and $Y=\left\{A \in M_{n \times n}: \operatorname{det}(A)= \pm 1\right\}$, prove that $X \subseteq Y$.

Hint: you may need to review properties of the determinant. If you can't find your linear algebra book, you can find the necessary ones here (\#4 is key!):

```
https://en.wikipedia.org/wiki/Determinant#Properties_of_the_determinant
```

