Math 108——Writing Assignment 09

Due: Saturday April 15-3:00 PM

Get the template for this assignment. Here's how to do it:

- Team Member 1: Go to https://www.sharelatex.com, and make sure you are logged in.
- Team Member 1: In a new window, go here:
https://www.sharelatex.com/project/58ebd8232836187d713d5c87
- Team Member 1: Click on the menu icon (upper-left corner - 3 horizontal lines); select "Copy Project"
- Team Member 1: When prompted for a name, choose something like "Math 108 - Assignment 08 " and click "Copy"
- Team Member 1: When this completes you will be back in your own workspace (instead of mine).
- Team Member 1: Click on the share icon (upper-right - 5 headed beast). Enter your team member's email address, make sure they "can edit" it, and "Share."
- Team Member 1 and 2: After solving the problems (possibly by yourself), work together to make a beautiful write up.
- Team Member 1 or 2: Email me (or print and turn in) one copy of your final draft.

The problems are below.

1. Let p be a prime number. Prove that for all $\bar{x}, \bar{y}, \bar{z} \in \mathbb{Z}_{p}$, if $\bar{x} \bar{y}=\bar{x} \bar{z}$ and $\bar{x} \neq \overline{0}$, then $\bar{y}=\bar{z}$.

Hint: Theorem 3.4 .4 could be helpful, but to use it, you will first need to rearrange the equation $\bar{x} \bar{y}=\bar{x} \bar{z}$.
2. Let A and B be sets, and let f be any function from A to B. The kernel of f is defined to be the relation on A given by

$$
x R y \Longleftrightarrow f(x)=f(y)
$$

Prove that the kernel of f is an equivalence relation on A.
3. For every subset $S \subseteq \mathbb{R}$, define the characteristic function of S to be

$$
\chi_{S}(x)= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}
$$

Prove that for all subsets $A, B \subseteq \mathbb{R}, \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A}(x) \cdot \chi_{B}(x)$.
Note that $\chi_{A \cup B}(x)$ is the characteristic function on the set $A \cup B$. You may want to consider using cases. For example: (1) x is in A but not in B, (2) x is in B but not in A, \ldots (two more cases)...

