Math 108-Writing Assignment 10

Due: Say Ap 3:00pm Wednesday May 3—3:00 PM

Get the template for this assignment. Here's how to do it:

- Team Member 1: Go to https://www.sharelatex.com, and make sure you are logged in.
- Team Member 1: In a new window, go here:
https://www.sharelatex.com/project/58ff6fca4ebb05ab65c8a1e6
- Team Member 1: Click on the menu icon (upper-left corner - 3 horizontal lines); select "Copy Project"
- Team Member 1: When prompted for a name, choose something like "Math 108 - Assignment 10" and click "Copy"
- Team Member 1: When this completes you will be back in your own workspace (instead of mine).
- Team Member 1: Click on the share icon (upper-right - 5 headed beast). Enter your team member's email address, make sure they "can edit" it, and "Share."
- Team Member 1 and 2: After solving the problems (possibly by yourself), work together to make a beautiful write up.
- Team Member 1 or 2: Email me (or print and turn in) one copy of your final draft.

The problems are below.

1. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-4 x$ is not an injection.
2. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=1-e^{x}$ is not a surjection.
3. Prove that the function $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ defined by $f(\bar{x})=\overline{x+2}$ is one-to-one and onto \mathbb{Z}_{6}.
4. Let p be a prime, and let $m \in \mathbb{Z}$ with $1 \leq m \leq p-1$. Prove that the function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ defined by $f(\bar{x})=\overline{m x}$ is one-to-one.
Hint: Theorem 3.4.5 is helpful.
