Chapter 1 structures is language
1.2 Languages

TBS
(1) write down a statement about the natural numbers_ it must be Tor F.
(2) Did you write it symbolically or did you use words? Try to write it symbolically - what symbols did you need?
(3) Everyone repeat (2) for (Goldbach's conj):

Every integer greater than 2 is the sum of two prime numbers.

* My choices: $2, S, P$, variables or $2, t, 1, \ldots$

Follow-up: is it true? can you prove it?

So what symbols might we want to talk about the natural numbers?

Perhaps:,$+ \cdot($,$) , variables, \forall, \ldots$

Can you use these to express that every element of \mathbb{N} is either even or one more than an even number?

$$
\begin{aligned}
& \text { either even or one more than an even } \\
& \text { Perhaps }(\forall a)(((7 b)(a=b \cdot(1+1))) \vee((\exists b)(a=b(1+1)+1)))
\end{aligned}
$$

Det A first-order language \mathcal{L} is an infinite collection of distinct symbols, no one of which is properly contained in another, of one of the following types
(1) Parentheses: (1)
always included (implicitly)
(2) connectives: V, \mp what about \wedge ? aiming
(3) Quantifier: \forall what about \exists ? \quad of abliciency
(4) Variables: $V_{1}, v_{2}, \ldots, v_{n}, \ldots$ (denoted Vars)
(5) Equality: $=$
(6) Constant symbols: zero ormore
(7) Function symbols: zero or more n-ary fum ot ion symbols for each pos. n
(8) Relation symbols: zero or more nary rel. symbols for each pos. n
\exists is a place holder for $\neg \forall \neg$. Similarly for Λ.

Ex Language of Number Theory

$$
\mathcal{L}_{N T}=\{0, S,+, \cdot, E,<\}
$$

amity
0 - constant
$a(S)=1 \quad S$ - 1-ary (or unary) function
$a(+)=2+$ - binary function

- binary function
E - binary function
$a(L)=2<$ - binary relation
* This is all syntax right now! The symbols have no meaning, though they usually have an intended. meaning.
TPS write down any sentence in $\mathcal{L}_{N T}$. * that you haven't al ready.

TPS If $S(x)=x+1$, write a sentence in LNT expressing that every natur al number is even.
(3) Note: You are assuming $S(x)=x+1$ and 0 is really zero and... so your sentence simply has an intended meaning.

TPS what other symbols might you want to have in cluded to talk about \mathbb{N} ?
com you think of an important unary relation on \mathbb{N} ? Can you think of any. Leary relation? Can you define them in \mathcal{L}_{N} ? * e.g. Prime $(x), D(x, y, z, \omega) \Leftrightarrow x \omega-y z=0$

Ex Language of Graph s $\mathcal{L}_{G r a p h}=\{E\}, E$ is a binary relation.
Q: what is the in tended meaning of

$$
\left(\forall v_{1}\right)\left(\exists v_{2}\right)\left(v_{1}=v_{2} \vee \neg E\left(v_{1}, v_{2}\right)\right) ?
$$

Ex Language of Set Theory $\mathcal{L}_{S T}=\{\epsilon\}, \epsilon$ is a binary relation.

Q: why not include \subseteq ?
$x \leqslant y$ can be expressed by $(\forall v)(v \in X \Rightarrow v \in Y)$ So the relation C can be "defined" from $\mathcal{L}_{\text {ST }}$
A: There are choices, and here we tried to minimize the \# of symbols.
1.3 Terms \&́Formulas

Once we pick a language, we cam write things down, but the may be completely nonsensical.
for example, in $\mathcal{L}_{N T}$ we could write

$$
\left(\forall v_{1}\right)\left(\left(\exists v_{2}\right)\left(v_{2}>v_{1}\right)\right)
$$

or we could write

$$
\left.v_{17}\right) \exists \forall \gg c
$$

Here we decide which strings will have meaning.
Terms (The nouns of our language.)
These are built up from variables and constants using functions, but not relations.

Def Let \mathcal{I} be a language. A term of \mathcal{L} is a nonempty, finite string t of
ne mositive symbols from \mathcal{I} such that either:
recursive \quad definition $\left\{\begin{array}{l}3, t: \equiv f t_{1} t_{2} \ldots t_{n} \text { where } f \text { is } \\ \text { an } n \text {-arr function symbol and } \\ \text { each } t_{i} \text { is a term }\end{array}\right.$

$$
\mathcal{L}=\mathcal{L}_{N T}=\left\{0, s_{1},+\cdots, E_{1},\right\}
$$

For example "is"

$$
\begin{aligned}
& 1 . t: \equiv v_{17} \\
& \text { 2. } t: \equiv 0 \\
& \text { 3 } t: \equiv S v_{2} \\
& \text { R } t: \equiv S 0 \\
& O R: \equiv+v_{1} v_{2} \text { ! } \\
& \text { RR } t: \equiv+S O S 0
\end{aligned}
$$

Q: which of the following are terms of $\mathcal{L}_{N T}$?
(1) $S+O v_{5}$
(3) ++500
(5) $S+E O S S O O$
(2) $+(50) 1$
(4) $0<50$

TPS write down 3 more terms of $\mathcal{L}_{N T}$, in prefix ? infix.
TPS write down 3 terms of $\mathcal{L}_{S T}$.

So, technically, terms are written with prefix notation, but we will often use infix when the contex is clear. For, example we will say that $v_{1}+\left(v_{2}+v_{3}\right)$ is a term of $\mathcal{L}_{\text {NT }}$ with the understanding that $v_{1}+\left(v_{2}+v_{3}\right)$ is a placeholder for $+v_{1}+v_{2} v_{3}$

Formulas

$$
\begin{aligned}
& \text { terms } \ldots . . \rightarrow \text { nouns } \\
& \text { formulas } H-\text { assertions }
\end{aligned}
$$

Bet Let \mathcal{L} be a language. A formula of \mathcal{L} is a nonempty, finite string ϕ of symbols from \mathcal{L} such that either:
atomic $\left(1 . \phi: \equiv=t_{1} t_{2}\right.$ where t_{1}, t_{2} are terms
 symbol and t_{1}, \ldots, t_{n} are terms
recursive del.
$\operatorname{again}\left\{\begin{array}{l}\text { 4. } \phi: \equiv(\alpha v \beta) \text { where } \alpha, \beta \text { are formulas } \\ \text { s. } \phi: \equiv \frac{(\forall v)(\alpha)}{/} \text { where } v \text { is a variable and } \alpha \\ \text { is a formula }\end{array}\right.$
the scope of the quantifier \forall is α
TPS write down 4 formulas of $\mathcal{L}_{N T}$ st. 2 are atomic and 2 are not.
TPS Do the same in $\mathcal{L}_{\text {GRAPH }}=\{E\}$
Are you missing \exists or N ? binary relation.

$$
\begin{array}{llll}
\text { Let us agree that } \\
\alpha \wedge \beta \text { is a placeholder for } & (\neg((\neg \alpha) \vee(\neg \beta))) \\
\alpha \rightarrow \beta & " & " & ((\neg \alpha) \vee \beta) \\
(\exists \vee)(\alpha) & " & " & (\neg(\forall v)(\neg \alpha))
\end{array}
$$

TPS Canyon write down a formula of $\mathcal{L}_{N T}$ with whose intended meaning captures the fact that \mathbb{N} has no largest element.

Q: Let \mathcal{L} be any $1^{\text {st }}$-order language. what is The indended meaning of

$$
\left.\left(\exists v_{1}\right)\left(\left(\exists v_{2}\right)\left(\left(\exists v_{3}\right)\left(\neg\left(\left(v_{1}=v_{2}\right) v\left(v_{1}=v_{3}\right) v\left(v_{2}=v_{3}\right)\right)\right)\right)\right)\right)
$$

Recall...
Proof by induction Suppose you want to prove
$P(n)$ is true forall $n \in \mathbb{N}$ with $x \geqslant c$.
where P is a statement about n.

1. (Base Case) Prove $P(c)$ is true.
complete 2. (Inductive step). Prove that $P(n) \longrightarrow P(n+1)$. induction
\rightarrow 2. (Inductive step). Prove that $P(c), P(c+1), \ldots, P(n)$ all together imply $P(n+1)$.

Running Example $P(n)$
Prove $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n \geqslant 1$

Base case: $P(1)$
Prove $I=\frac{1(1+1)}{2} . L H S=1, R H S=1$, so dore.
Inductive step $P(n) \rightarrow P(n+1)$
Assume $1+2+\cdots+n=\frac{n(n+1)}{2}$
Prove $1+2+\cdots+(n+1)=\frac{(n+1)(n+1+1)}{2}$

$$
\begin{aligned}
\text { LHS } & =1+2+\cdots+(n+1) \\
& =1+2+\cdots+n+(n+1) \\
& =\frac{n(n+1)}{2}+n+1=\cdots=\frac{(n+1)(n+2)}{2}=\text { RHS }
\end{aligned}
$$

Proving statements about all formulas or all terms

* usually done "by induction on the complexity of the formula" ... or "complexity of the term"
* Let's see this by example.

Theorem 1.4.2 Let ϕ be any formula in a language \mathcal{L}. Then the number of left parentheses in ϕ is equal to the number of right parentheses.
pt
we proceed by induction on the number of connectives and quantifiers in ϕ.

Base case: Assume ϕ has O connectives and quant. Then ϕ is atomic. Thus, either

$$
\phi: \equiv=t_{1} t_{2}
$$

with t_{1}, \ldots, t_{n} terms
or

$$
\phi: \equiv R t_{1} \ldots t_{n} \quad \text { and } R \text { an } n \text {-ary rel. sym. }
$$

As terms have no parentheses, ϕ has no parentheses, so ϕ certainly has an equal $\#$ of L and R parens.

Inductive step Assume The is true for formals w/ k conrectives/quantifiers. Assume ϕ has $k+1$ con/quan. Thus ϕ is not atomic, so either

$$
\phi: \equiv(\neg \alpha)
$$

OR

$$
\phi: \equiv(\alpha \vee \beta)
$$

where α, β ore formulas;
or

$$
\phi: \equiv(\forall v)(\alpha)
$$

$$
V \text { is a var able }
$$

Note that α, β have at most k quantifiers So the num. of their L and R pore n. are equal. Thus, the same is true for ϕ.
1.5 Sentences

Ex Determine if each $\mathcal{I}_{N T}$ formula is True, False, or indeterminate (when interpreted the usual way)
(a) $(\exists x)(\forall y)(y<x)$
(b) $(\forall x)(\exists y)(x<y)$
(c) $\forall x(x<y) \longleftarrow y$ is a free variable

Let Let v be a variable and ϕ a formula. we say that v is free in ϕ if either

1. ϕ is atomic and v occurs in $\phi \mid 1 . v=0$ or $v<0$
2. $\phi: \equiv \neg \alpha$ and v is free in α
3. $\phi: \equiv \alpha \vee \beta$ and v is free in α or β
4. $\phi: \equiv\left(\forall_{u}\right)(\alpha)$ and v is free in α

AND $v \neq u$

* Notice that this covers $\lambda, \rightarrow, \exists, \ldots$ too

2. $\neg(v=0)$
3. $(\neg(v=0)) v_{0}=0$
4. $\forall u(v=0)$
or $\forall u(v=u)$ But not $\forall v(v=0)$
(If v is free in ϕ, we may write $\phi(v)$ instead of Q.

TPS Determine if x is free in

$$
(\forall x(x E 0=50)) \vee(x=0)
$$

Deft A sentence is a formula with no free variables.

$$
\begin{aligned}
& \text { binary } \\
& x \cdot y
\end{aligned} x_{5}^{-1}
$$

TPS Let $\mathcal{L}_{G}=\{\cdot,-1,1\}$, write three strings of symbols s.t. one is NOT an \mathcal{L}_{G}-formula, one is an \mathcal{L}_{G}-formula thatis NOT a sentence, and one that is an \mathcal{L}_{G}-sentence.

TPS IS $\sin ^{2} x+\cos ^{2} x=1$ a sentence of $\mathcal{L}=\left\{\sin ^{2}, \cos ^{2}, 1\right\}$? If not, alter it to create unary unary actual sentence that captures the intended meanging ot the original.
1.6 Structures
...t the beginning of semantics.

Def Let \mathcal{L} be a language. An \mathcal{L}-structure $M($ is a nonempty set M (the universe of M) to getter with:

1. an element c^{M} of M for each constant symbols,
2. an nary function $f^{n}: M^{n} \rightarrow M$ for each n-ar
see the difference? \qquad
3. an n-ary relatim $R^{M n} \subseteq M^{n}$ for each n-ary relation symbol R
㫚 book occasionally uses f-model.
Ex Let $\mathcal{L}=\{0, f, S\}$ with
O - constant
f - binary function
S - unary relation
Define

* $M=\{a, b, \Delta\}$
$* 0^{m}=a$
* f^{m} with the following table:

* $\quad S^{m}=\{a, b\} \subseteq M$

Then $\quad M=\left(M, o^{m}, f^{m}, s^{m}\right)$ is an $\mathcal{L}_{\text {-structure. }}$

Ex Let \mathcal{L} be as above.
Define $R=\left(\mathbb{R}, 0^{R}, f^{R}, S^{R}\right)$ by

$$
0^{R}=\pi / 2, \quad f^{R}(a, b)=a \cdot b, \quad s^{R}=\mathbb{Z}
$$

Then this is also an \mathcal{L}-structure

TPS Recall: $\mathcal{L}_{\text {Graph }}=\{E\}$ where E is a binary relation. Detine an \mathcal{L}-structure $w / 4$ elements.

Back to firm ground...
Ex $\operatorname{Recall} \mathcal{L}_{N T}=\left\{0, S,+, \cdot E_{1}<\right\}$
Define $\eta=\left(N, 0^{n}, s^{n},+^{n}, n^{n}, E^{n},<^{n}\right)$ as follows
symbol on $0^{n}=0$ the actual number!
the paper

$$
\begin{aligned}
& S^{n}: \mathbb{N} \rightarrow \mathbb{N} \text { by } S^{n}(x)=x+1 \\
& +^{n}: \mathbb{N}^{2} \rightarrow \mathbb{N} \text { by } t^{n}(x, y)=x+y \text { or } x+^{R} y=x+y \\
& .^{n}: \mathbb{N}^{2} \rightarrow \mathbb{N} \text { by } \cdot^{n}(x, y)=x \cdot y \\
& E^{n}: \mathbb{N}^{2} \rightarrow \mathbb{N} \text { by } E(x, y)=x^{y} \\
& <^{n} \subseteq \mathbb{N}^{2} \quad \text { by }(x, y) \in<^{n} \Longleftrightarrow x<y . \\
&
\end{aligned}
$$

Then N is the so-called "standard" $\mathcal{L}_{N T}$-structure.
a we often omit the superscripts and write $n=(N, 0, S,+, \cdot, E,<)$ is an $\mathcal{L}_{N_{T}-\text { strucd. }}$

Ex Let $\mathcal{L}=\{l,+\}$ with l a constant and + a 2-ary funct. symbol.
Define the \mathcal{L}-struatme $\mathcal{S}=(S, l, t)$ by

* S is the set of finite string s from the spanish alphabet.
* $l^{\&}=a b \tilde{n} z$.
* $+^{\&}: S \times S \rightarrow S$ is "concatenation"
e.g. $l^{A}+^{\&}$ rr $=a b \tilde{n} z r r r$
1.7 Truth in a Structure

Def -Informal Let ϕ be an \mathcal{L}-formula and M an \mathcal{L}-structure, we say \mathcal{M} is a model of ϕ or η satisfies ϕ, denoted $\eta \neq \phi$, provided:

- if ϕ is a sentence
ϕ is a true statement about M with the standard interpretations of the quantifiers and connectives
- if ϕ has free variables among v_{1}, \ldots, v_{n}
$\left(\forall v_{1}, v_{2}, \ldots, v_{n}\right)(\phi)$ is a true statement about m.

Ex Let $\left.\mathcal{L}_{R}=\frac{0_{1} 1_{c}}{c}-\frac{1}{F^{\prime}} \frac{t_{1} \cdot}{F^{2}}\right\}$. consider
$Q=Q=(Q, 0,1,-,+, \cdot)$ with the standard interp.
e.g. ${ }^{Q}(x)=-x$ (thereg. of x)
$\mathbb{Z}=Z=(\mathbb{Z}, 0,1,-,+, \cdot)$ with the stand. inter.
Thus, $\mathbb{Q}: \mathbb{Z}$ are \mathcal{f}_{R}-structures.
(1) Let $\phi: \equiv(\forall x)\left[\frac{(x \neq 0)}{\neg(x=0)} \longrightarrow((\exists y)(x \cdot y=1))\right]$

Then Q this notation highlights this notation highlights
(2) Let

$$
\begin{aligned}
& \Psi(x): \equiv(x \neq 0) \rightarrow[(\exists y)(x \cdot y=1)] \\
& \rho(x): \equiv(\exists y)(x \cdot y=1)
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \mathbb{Q} \vDash \psi(x) \quad b / c \quad \mathbb{Q} F(\forall x)(\psi(x)) \\
& \mathbb{Z} \not \vDash \psi(x)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& Q \not \models \rho(x) \quad b / c \quad Q \not \models(\forall x)(\rho(x)) \\
& \mathbb{Z} \not \models \rho(x)
\end{aligned}
$$

* Finally, we do have $\mathbb{Q} F \rho(-1)$ and $\mathbb{Z} \vDash \rho(-1)$

$$
\text { substitute }-1 \text { for } x \text { in } p
$$

yields a sentence.

TPS \mathbb{R} and \mathbb{C} are also \mathcal{L}_{R}-structures in the obvious way. Find an \mathcal{L}_{R}-sentence tree in \mathbb{C} bat not in \mathbb{R}.

Onward to the details...

Assigning Values to Variables

- I a langrage
- M an \mathcal{L}-structure

Running Example $\mathcal{L}_{N T}$, standard $\mathcal{L}_{N T}$-struct. \mathbb{N}.
Def Any function $S: V$ Vars $\longrightarrow M$ is called a variable assignment function into M.
$E x$ In $N \ldots$
$S_{1}:$ Vars $\rightarrow \mathbb{N}: S_{1}\left(v_{i}\right)=2 i+1$
egg. $\quad s_{1}\left(v_{3}\right)=7, s_{1}\left(v_{6}\right)=13$
$S_{2}:$ Vars $\longrightarrow \mathbb{N}: s_{2}\left(u_{i}\right)=13$
e.g. $s_{2}\left(v_{3}\right)=13, s_{2}\left(v_{6}\right)=13$

From Vars to \mathcal{L}-terms
Deft Let $s:$ vars $\rightarrow M$ be any variable assignment function. Define $\bar{s}:\{\mathcal{L}$-terms $\} \longrightarrow M$ by

1. if t is a variable, then $\bar{s}(t)=s(t)$
2. if t is a constant, them $\bar{s}(c)=c^{m}$
3. (inductively) if $t: \equiv f t_{1} \cdots t_{n}$, then

$$
\bar{s}(t)=f^{m}\left(s\left(t_{1}\right), \cdots, \bar{s}\left(t_{n}\right)\right)
$$

Ex In $\operatorname{N} . .$. let $t: \equiv E\left(v_{3}, 550\right)+\left(v_{1} \cdot V_{3}\right)+v_{5}$

$$
\begin{aligned}
& S_{1}\left(v_{i}\right)=2 i+1 \Rightarrow \bar{S}_{1}(t)=E(7,2)+3 \cdot 7+11=81 \\
& S_{3}\left(v_{i}\right)=3 \Longrightarrow \bar{S}_{3}(t)=E(3,2)+3 \cdot 3+3=21
\end{aligned}
$$

Ex Let $t^{\prime}: \equiv$ SO. Explain how $\bar{S}_{1}\left(t^{\prime}\right)$ is evaluated.

$$
\bar{s}_{1}\left(t^{\prime}\right)=s^{m}\left(\bar{s}_{1}(0)\right)=s^{m}\left(0^{m}\right)=1
$$

then, $\bar{S}_{1}(0)=0^{m \rho}$
Some times we want to fix some out pats of S.
Def Let $s:$ Vars $\longrightarrow M$ be a var. assign. function. Define

$$
S[x \mid a](v)= \begin{cases}a & \text { if } v \text { is the variable } x \\ S(v) & \text { otherwise. }\end{cases}
$$

This is an x-modification of s.

Ex Let $t: \equiv E\left(v_{3}, s s_{0}\right)+\left(v_{1} \cdot v_{3}\right)+v_{5}$.

$$
\begin{aligned}
& S_{1}\left(v_{i}\right)=2 i+1 . \\
& \overline{S_{1}}(t)=81 \text { (from before). } \\
& S_{1}\left[v_{3} \mid 2\right](t)=E(2,2)+(3 \cdot 2)+11=21
\end{aligned}
$$

Let Let $s:$ vars $\rightarrow M$ be a var. assign. function. Let ϕ be an \mathcal{L}-formula. We say sutifies ϕ with assignment s, denoted $M \vDash \phi[s]$, provided:

1. if $\phi: \equiv t_{1}=t_{2}$ then $\bar{s}\left(t_{1}\right)=\bar{s}\left(t_{2}\right)$
2. if $\phi: \equiv R t_{1} \ldots t_{n}$ then $\left(s\left(t_{1}\right), \ldots, \bar{s}\left(t_{2}\right)\right) \in R^{m}$
inductive
3. if $\phi: \equiv(\neg \alpha)$, then $\mathscr{M} \not \vDash \alpha[s]$
4. if $\phi: \equiv(\alpha \vee \beta)$, then $M \in \alpha[s]$ or $M 1=\beta[s]$
5. if $\phi: \equiv(\forall x)(\alpha)$, then $\forall m \in M \quad \neq \mathcal{} \quad \forall[s(x \mid m)]$

* This also covers the other quantifiers and connectives.

Ex In $\mathcal{L}_{N T}$, let $\phi: \equiv\left(\forall v_{1}\right)\left[\left(v_{1}=0\right) v\left(\forall v_{2}\right)\left(v_{2}<v_{1}+v_{2}\right)\right]$ Show that for any v.a.f. $S, \mathbb{N} \vDash \varphi[S]$.
observe,
$\mathbb{N F} \varphi[s]$ if $\forall m \in \mathbb{N},\left[\left(v_{1}=0\right) v\left(v v_{2}\right)\left(v_{2}<v_{1}+v_{2}\right)\right]\left[s\left[v_{1} \mid m\right]\right]$ iff $\forall m \in \mathbb{N}, \mathbb{N} \mid=\left(v_{1}=0\right)\left[s\left[v_{1} \mid m\right]\right]$ or

$$
\begin{aligned}
& \left.\mathbb{N} \vDash\left(v_{1}=0\right)\left[s v_{1}, v_{1} \mid m\right]\right] \\
& \mathbb{N} \vDash\left(\forall v_{2}\right)\left(v_{2}<v_{1}+v_{2}\right)\left[s\left[v_{1}\right)\right.
\end{aligned}
$$

iff $\forall m \in \mathbb{N},\left(m=0^{\mathbb{N}} \quad\right.$ or

$$
\begin{aligned}
& \in \mathbb{N},\left(m=0 \quad \mathbb{N} \in\left(v_{2}<v_{1}+v_{2}\right)\left[S\left[v_{1} \mid m\right]\left[v_{2} \mid r\right]\right]\right) \\
& \left.\forall r \in \mathbb{N}, \quad \mathbb{N} \quad 0^{\mathbb{N}} \quad \sigma R \quad \forall r \in \mathbb{N}\left(r<{ }^{N} m+{ }^{N} r\right)\right)
\end{aligned}
$$

iff $\forall m \in \mathbb{N}\left(m=0^{\mathbb{N}}\right.$ or $\left.\quad \forall r \in \mathbb{N}\left(r<{ }^{N} m+{ }^{N} r\right)\right)$

The final statement is true, so $\mathbb{N} F \varphi[s]$.
Let For ϕ an \mathcal{L}-formula and $~ M$ an \mathcal{L}-structure we write $\underline{M} \vDash \phi$ iff $M \vDash \phi[s]$ for every V.a.f. S. Also, if Γ is a set of \mathcal{L}-formulas we write $m \vDash \Gamma$ if $\quad \eta \vDash \phi$ for all $\phi \in \Gamma$. * we read $M \vDash \phi$ as " M models ϕ " or " M satisfies ϕ "

So, in the last example, $\mathbb{N} \vDash \phi$, i.e. \mathbb{N} models ϕ.

A few results...
Lemma 1.7 .6 suppose S_{1}, s_{2} are v.a.f. into a structure M.
If $S_{1}(v)=S_{2}(v)$ for every variable v that occurs in the term t, then $\bar{S}_{1}(t)=\bar{S}_{2}(t)$.
pf
we use in auction on the complexity of t.
Base case:

- $t: \equiv V$, vavariable. Then $\bar{S}_{1}(t)=S_{1}(v)=S_{2}(v)=\bar{S}_{2}(t)$
- $t: \equiv C_{1}$ caconstant. Them $\bar{S}_{1}(t)=c^{m}=\bar{S}_{c}(t)$.

Ind. case:
Assume $t=f t_{1} \ldots t_{n}$ and $\bar{S}_{1}\left(t_{i}\right)=\bar{S}_{2}\left(t_{i}\right)$.
Then $\bar{s}_{1}(t)=f^{m}\left(\bar{s}_{1}\left(t_{1}\right), \ldots, \bar{s}_{1}\left(t_{n}\right)\right)$

$$
\begin{aligned}
& \left.=f\left(s_{1}, z_{1}\right), \bar{s}_{2}(t m)\right)=\bar{s}_{2}(t) \cdot \square
\end{aligned}
$$

Prop. 1.7.7 Suppose s_{1}, s_{2} are v.a.f. into a structure
M. Let ϕ be a formula. If $s_{1}(v)=s_{2}(v)$ for every free variable v in ϕ, then

$$
M \vDash \phi\left[s_{1}\right] \quad \text { if } ~ M \vDash \phi\left[s_{2}\right]
$$

pt
By induction - see the book.
Cor. 1.7.8 If ϕ is a sentence, then $M \vDash \phi$ iff $\quad \eta \neq \phi[s]$ for some v.a.f.s.
1.9 Logical Implication (1.8 is postoned)

Most theorems are of the form "If V is a vectorspace, then..."
"If G is a graph, then..."
"If G is a group, then..."
That is, assuming a structure satisfies some axioms (sentences), then some other sentences are true.

Let Let Δ and and Γ be sets of \mathcal{L}-formulas. we say that Δ logically implies Γ if for all \mathcal{L}-structures $M, \quad M \vDash \Delta \rightarrow M \vDash \Gamma$.

Ex Let $\mathcal{L}=\left\{a_{1} \cdot\right\}$ with e a constant symbol and - a binary function symbol. Let

$$
\begin{align*}
\Delta=\{ & (\forall x, y, z)[(x y) z=x(y z)], \tag{1}\\
& (\forall x)(x e=e x=x), \\
& (\forall x)(\exists y)(x y=y x=e), \\
& (\forall x)(x \cdot x=e)\} \tag{4}\\
\Gamma= & \{x y=y x\}
\end{align*}
$$

ϕ_{1}
ϕ_{2}
ϕ_{3}
ϕ_{4}

Prove that $\Delta F \Gamma$.
(we do this informally this time; contrast w/book.)

Let M be any \mathcal{L}-structure. We must show

$$
\begin{aligned}
M \vDash \Delta \Rightarrow & \eta \vDash \Gamma \\
& \eta \vDash x y=y \times \Leftrightarrow \eta \vDash(\forall x, y)(x y=y x)
\end{aligned}
$$

Assume $M \vDash \Delta$. We wout to prove $(\forall x, y)(x y=y x)$.
Let $a, b \in M$. Then

* there is a $a^{\prime} \in M$ s.t. $a^{\prime} a=e$

$$
\begin{align*}
& \text { * " "a } b^{\prime} \in M \text { s.t. } b b^{\prime}=e \\
& a \cdot b \in M \Longrightarrow(a \cdot b) \cdot(a \cdot b)=e^{m} \tag{4}\\
& \Rightarrow a \cdot(b \cdot(a \cdot b))=e^{m} \tag{1}\\
& \Longrightarrow a^{\prime}(a(b(a b)))=a^{\prime} e^{m} \\
& \Longrightarrow\left(a^{\prime} a\right) \cdot(b(a b))=a^{\prime} \tag{i}\\
& \Longrightarrow e^{m} \cdot(b(a b))=a^{\prime} \tag{3}\\
& \Longrightarrow b(a b)=a^{\prime} \text { (2) ! } \\
& \Longrightarrow b a b e^{M}=a^{\prime} \text { (2) } \\
& \Rightarrow b a b b^{\prime}=a^{\prime} b^{\prime} \\
& \Rightarrow b a e^{M}=a^{\prime} b^{\prime} \text { (3) } \\
& \Longrightarrow b a=a^{\prime} b^{\prime} \text { (2) } \\
& \Rightarrow b a=e^{m} a^{\prime} b^{\prime} e^{m} \tag{2}\\
& \Longrightarrow b a=a a a^{\prime} b^{\prime} b b \\
& \Longrightarrow b a=a e^{\eta} e^{\eta} b \tag{3}\\
& \Longrightarrow b a=a b \text { (2) } \\
& \text { Now that } \\
& \text { (1) works, } \\
& \text { letsignore } \\
& \text { paren theses }
\end{align*}
$$

Thus, $\quad \Delta \vDash \Gamma$

Net Let ϕ be an \mathcal{L}-formula. If $\phi \vDash \phi$, then every \mathcal{L}-structure satisfies ϕ, and we say ϕ is logically valid.

* we write $\vDash \phi$ instead of $\phi \vDash \phi$.

Ex In the previous example, we had

$$
\begin{gathered}
\Delta \vDash \Gamma \\
\left.\phi_{2}, \phi_{3}, \phi_{4}\right\}
\end{gathered}
$$

Then, if $\phi: \equiv\left(\phi_{1} \wedge \phi_{2} \wedge \phi_{3} \wedge \phi_{4}\right) \rightarrow \psi$, then ϕ is logically valid, so $F \phi$.

Ex Suppose \mathcal{L} contains a mary relation P. fully prove that $\phi: \equiv(\forall x) P(x) \rightarrow(\exists x) P(x)$ is logically valid.
Let M be any \mathcal{I}-structure and s any v.a.f. we must show $M=\phi[s]$.

- If $M \nRightarrow((\forall x) P(x))[s]$ then $O M \vDash \phi[s]$ by deft of \rightarrow.
- Suppose $M \vDash((\forall x) P(x))[s]$. So, for every $m \in M \quad O \quad \neq(P(x))[s[x \mid m]]$; thus, for some $m \in M, M_{F} \in(P(x))[s[x \mid m]]$. Hence $M \vDash((\exists x) P(x))[s]$, so

$$
M F \phi[s] .
$$

1.8 Substitutions and Substitutability

Let $\phi: \equiv(\exists y) \neg(x=y)$. Note that ϕ is true in any structure with at least 2 elements. For example $\mathbb{N} \vDash \phi$.

- Suppose you replace x with U. Is it true that $\phi \vDash \phi_{n}^{x}$?

$$
\phi_{u}^{x}: \equiv(\exists y) \neg(u=y)
$$

Yes-clearly.

- Suppose we are in INT and replace x with the term $u+v$. Is $\phi k \phi_{u+v}^{x}$ true?

$$
\phi_{u+v}^{x}: \equiv(\exists y) \neg(u+v=y)
$$

Yup.

- Suppose you replace x with y. $\phi=\phi_{y}^{x}$?

$$
\phi_{y}^{x}: \equiv(7 y) \neg(y=y)
$$

No! ... ϕ_{y}^{x} is now false in every structure.

Deft suppose x is a variable and t is a term.

- If u is a term, we define u_{t}^{x} ("u with x replaced by $t^{\prime \prime}$) as you expect. See book
- If ϕ is a formula, we define ϕ_{t}^{x} as follows

1. if $\phi: \equiv=t_{1} t_{2}$, then $\phi_{t}^{x}: \equiv=\left(t_{1}\right)_{t}^{x}\left(t_{2}\right)_{t}^{x}$
2. if $\phi: \equiv R t_{1} \ldots t_{n}$, then $\phi_{t}^{x}: \equiv R\left(t_{1}\right)_{t}^{x} \ldots\left(t_{n}\right)_{t}^{x}$
3. if $\phi: \equiv \neg(\alpha)$
4. if $\phi: \equiv \alpha \vee \beta \ldots$ similar
s. if $\phi: \equiv(\forall \gamma)(\alpha)$, then

$$
\phi_{t}^{y}: \equiv\left\{\begin{array}{cl}
(\forall y)\left(\alpha_{t}^{x}\right) & \text { if } x \neq y \\
\phi & \text { if } x=y
\end{array}\right.
$$

Ex work in \mathcal{L}_{N}. Let

$$
\phi: \equiv(\forall y)(x+y=z) \vee(\forall x)(x \cdot x=x)
$$

Then, if $t: \equiv y+w$,

$$
\phi_{t}^{x}: \equiv(\forall y)(y+w+y=z) \vee(\forall x)(x \cdot x=x)
$$

Save thing would have happened with Ix here.

Net Hyp. as before. We say tis substitutable for x in ϕ if

1. ϕ is atomic,
2. $\phi: \equiv \neg(\alpha)$ and t is sub. for x in α,
3. $\phi: \equiv(\alpha \vee \beta)$ and t is sub. for x in both α and β.
4. $\phi: \equiv(\forall y)(\alpha)$ and either

- x is not free in ϕ or
- (x is free and) y does notoccur in the term and t is sub. for x in α.

Ex Determine if $t: \equiv y z+z$ is sub. for x. (inf $\mathcal{L}_{N T}$)
(1) $\phi: \equiv(\forall y)(s x=y) \quad N_{0}!$
(2) $\phi: \equiv(\forall y)(y=0 \vee(\forall x)(x=y))$ Yes!
(3) $\phi: \equiv \frac{(y=x)}{\text { atomic }} \vee(\forall \omega)\left(\frac{E(\omega, x)>\omega}{\text { atomic }}\right)$ Yes

