CHAPTER 2 DEDUations
2.2 Deductions

What do we mean by proof?
Rough Idea:
Using sone axioms/assumptions, we continue to infer new true statements, until we arrive at what we wonted to prove.

So,

- a proof will be a string of true statements
- each statement should either be
- an axiom or as sumption, or
- be infered from ear lied statements wantextra properties

$$
\text { e.g. } P, P \rightarrow Q, Q
$$ later

Bet Let

- be a set of \mathcal{L}-formulas (the logical axions)
- \sum be a set of \mathcal{L}-formulas (thenon-log axioms)
- D be a finite sequence $\left(\phi_{1}, \ldots, \phi_{n}\right)$ of \mathcal{L}-formulas.

Then we call D a deduction from \sum if for all $1 \leq i \leq n$, either

1. $\phi_{i} \in A_{1}$
2. $\phi_{i} \in \Sigma$, or
$\|^{R I}$
3. There isarule of inference $\left(\Gamma, \phi_{i}\right)$

$$
\text { with } \Gamma \subseteq\left\{\phi_{1}, \ldots, \Phi_{i-1}\right\}
$$

* We say Disadeduction from \sum of ϕ_{n} and write $\Sigma \vdash \phi_{n}$

About N and $(\Gamma, \phi) \ldots$ among other things we will want

- every $\alpha \in A$ is valid, ie. $k \alpha$.
- RI preserve truth, ie. $\Gamma \vDash \phi$

Ex
Let $N=\varnothing$
Let rules of inference be $\{(\{\alpha, \alpha \rightarrow \beta\}, \beta) \mid \alpha, \beta$ ore \mathcal{f}-form. $\}$
Let $\sum=\{\forall x P(x, x), P(u, v), \quad \uparrow$ modus ponens

$$
\begin{aligned}
& P(v, u) \rightarrow P(u, u), P(v, u) \rightarrow P(v, v), \\
& P(u, v) \rightarrow P(v, u)\} .
\end{aligned}
$$

(1) Show $\mathcal{E} \vdash P(u, u)$.
$\sum P(u, v)$
$\sum P(u, v) \rightarrow P(v, u)$
Rofl $P(v, u)$
$\sum P(v, u) \rightarrow P(u, u)$
$\operatorname{RofI} P(u, u)$

Incorrect Dad.

$$
\forall x P(x, x)
$$

$$
P(u, u)
$$

(2) Explain why $\Sigma \nmid-P(v, v)$.

Def Assuming N, Σ, and the Rof I are fixed, we define $\operatorname{Thm}_{\Sigma}=\{\phi \mid \Sigma+\phi\}$

- all formulas de ducible from \sum
Ex In last example or The thor ems $\operatorname{Thm}_{\varepsilon}=\Sigma u\{P(v, u), P(u, u)\}$. generated by Σ via deductions

Prop.2.2.4 The is the smallest set C ot \mathcal{F}-formulas such that

1. $E \subseteq C$,
2. $\Lambda \leq c$, and
3. if (Γ, θ) is a R of I with $\Gamma \leqslant C$, then $\theta \in C$.
pt
(1) Show $\operatorname{Thm}_{\Sigma}$ satisfies $1-3$.

- If $\alpha \in \mathcal{E} \cap$ then (α) is a deduction of α, so $\alpha \in \operatorname{Thm}_{\varepsilon}$. Thus $\sum u \wedge \subseteq$ The.
- Let (Γ, ϕ) be a Rot I with $\Gamma \leqslant$ The ε.

Remember: Γ is finite, so $\Gamma=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \leqslant \operatorname{Thm}_{\varepsilon}$.
Thus, there is a deduction D_{i} of α_{i} from \mathcal{E}. Then $D_{1} \cup \ldots \cup D_{m} \cup\{\phi\}$ (withobvious meaning)
is a deduction of ϕ from \mathcal{E}.
(2) Show that if C satisfies $1-3$, then The $\varepsilon \subseteq C$. Let $\phi \in$ The. Proceed by induction on the length of the shortest deduct ion at ϕ
 Otherwise, we may assume there is a R of I (Γ, ϕ) sit. $\Gamma \leqslant C$ (by induction). Thus, by $3, \phi \in C$.
2.3 Logical Axioms

There will be about equality and quantifiers.
Deft The set of logical a xioms, $\Lambda_{\text {, }}$ is defined as follows:

- For every variable x in 1,
(ElI) $\quad \underline{x=x}$ is in λ
- For all variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and all function symbols f and all relation symbols R,

$$
(E 2)\left[\left(x_{1}=y_{1}\right) \wedge \cdots \wedge\left(x_{n}=y_{n}\right)\right] \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$ and

$$
\begin{aligned}
& \text { and } \\
& (E 3)\left[\left(x_{1}=y_{1}\right) \wedge \cdots \wedge\left(x_{n}=y_{n}\right)\right] \rightarrow\left[R\left(x_{1}, \ldots, x_{n}\right) \rightarrow R\left(y_{1}, \ldots, y_{n}\right)\right]
\end{aligned}
$$

are in Λ

- For every variable x in \mathcal{L}, every \mathcal{L}-term t, and every \mathcal{L}-formula $\phi, \stackrel{\text { if }}{=}$ is subtitutable for x in ϕ, then
(Q)

$$
(\forall x)(\phi) \rightarrow \phi_{t}^{x}
$$

and
$\left(Q_{2}\right)$ and $\phi_{t}^{x} \rightarrow(\exists x)(\phi)$
are in n

- There are no other formulas in Λ

Q: how many formulas are in Λ ?
2.4 Rules of Inference
I. Propositional Consequence

Remember logic from 108? We had things like

$$
\neg(A \vee B) \approx(\neg A) \wedge(\neg B) \quad \text { (DeMorgan) }
$$

\uparrow logically equivalent
Here, A, B, \ldots were propositional variables and were always assigned values of T or F. Then we could prove things like the ore above with a truth table

Also, a propositional formula is a tautology if it is always true, e.g. $A \cup(\neg A)$

A	$\neg A$	$A V \neg A$
T	F	T
F	T	T
T		

we now define a function to convert first-order formulas to propositial formulas.

Running Example Let

$$
\beta: \equiv[(\forall u)(P(u))) \wedge f(y)=z] \rightarrow[(\forall z)[(\exists y)(f(y)=z)] v(\forall u) P(u)]
$$

1. Find all subformulas of β of the form $(\forall x)(\alpha)$ that are NOT in the scope of another quantifier and systematically replace them with a prop. variable. (Repeat for all such subformulas)
2. Systematically replace all remaining atomic formulas with new prop, variables.

$$
\beta_{p} \equiv(A \wedge B) \rightarrow(C \vee A)
$$

Notice that β_{p} is a tautology since

$A B C$	$A \wedge B$	β_{P}
$T T$	T	T
$T F$	F	T
$F T$	F	T
$F F$	F	T

Does not de pend on C- ow need 8 rows

Fact β_{p} a tautology $\Longrightarrow \beta_{p}$ is valid, ie. $F \beta$
converse is not (always) true.
using Lemma 2.4.2
Let Let $\Gamma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a finite set of \mathcal{L}-formulas, and ϕ another \mathcal{L}-formua. Let $\Gamma_{p}=\left\{\alpha_{1}, \ldots, \alpha_{n p}\right\}, \phi_{p}$ be the results ot applying the above conversion procedure uniformly to all of the \mathcal{L}-formulas. We say that ϕ is a propositional consequence of Γ if

$$
\left[\alpha_{1 p} \wedge \alpha_{2 p} \wedge \cdots \wedge \alpha_{n p}\right] \rightarrow \phi_{p}
$$

is a tautology.
II. The Rules af inference

- Whenever ϕ is a propositional cons. of Γ, $(P C) \quad(\Gamma, \phi)$ is a rule of in terence
- For all formulas ϕ and ψ and all variables x that are NOT free in ψ
$(Q R) \quad(\{\psi \rightarrow \phi\}, \psi \rightarrow(\forall \times \phi))$ and

$$
(\{\phi \rightarrow \psi\},(\exists x \phi) \rightarrow \psi)
$$

are rules of inference.

- There are no other rules.

To clarify

- If you prone α and β and

$$
[\alpha \wedge \beta \rightarrow \phi]_{p}
$$

is a tautology, then you san conclude ϕ.

- Provided x is NDT free in Ψ,
- from $\psi \rightarrow \phi$ you can deduce $\psi \rightarrow \forall x \phi$
- from $\phi \rightarrow \psi \quad u \quad . \quad$ " $\exists \times \phi \rightarrow \psi$

Important Note

- The set of Rofl Is is de cidable: there is algorithm (think comp. prog.) that given a finite set of \mathcal{y}-formulas Γ and y-form. ϕ can decide (in a finite amount ot time) if (Γ, ϕ) is a R of I or not.
- Also, λ is decideable
2.5 Soundness

The goal of this section is to prove:

Theorem 2.5.3. (Soundness) If $\sum \vdash \phi$, then $\sum \leqslant \phi$. \uparrow of our deductive system. (Λ and Rofl I)

* \sum is a set at formulas. Soundness says
" if assuming Σ, we can prove ϕ, then any structure that thinks \mathcal{E} is true, will also think ϕ is true." OR
" if we com prove it, it's true."
or
"proofs preserve truth."

Recap of require vents for our deductive system:
exercises $\left\{\begin{array}{l}1 \text {. an algorithm can decide if } \theta \in \Lambda \text { or not } \\ 2 \text { 2. an algorithm can decide, }\end{array}\right.$ if (Γ, θ) is a Rot I.
3. M is finite for every $\operatorname{Rot} I(\Gamma, \theta)$
4. $F N$
5. RofIs preserve truth: if (Γ, θ) is an Roo I, then $\Gamma F \theta$

Theorem 2.5.1 $\vDash N$
et Let $\alpha \in \Lambda$ and let s be any val. We show $M \neq \alpha[s]$. Note: is of type $E \backslash, E 2, E 3, Q 1$,or $Q 2$.

Claim: If α has type $E 3$, then $O M t \alpha[s]$. pt of claim.

- W has the form

$$
\left(x_{1}=y_{1}\right) \wedge \ldots \wedge\left(x_{n}=y_{n}\right) \rightarrow\left(R\left(x_{1}, \ldots, x_{n}\right) \rightarrow R\left(y_{1}, \ldots, y_{n}\right)\right)
$$

- Assume

$$
\begin{aligned}
& M_{\neq} s\left(x_{1}\right)=s\left(y_{1}\right) \wedge \cdots \wedge s\left(x_{n}\right)=s\left(y_{n}\right) \\
& \text { and } \\
& M_{\neq}\left(s\left(x_{1}\right), \ldots, s\left(x_{n}\right)\right) \in R^{\eta}
\end{aligned}
$$

- Thus

$$
M_{M}(s(y), \ldots, s(y n)) \in R^{M} \text {, so } M 1=\alpha[s] \text {. }
$$

Claim: If α has type $Q 1$, then $M \vDash \alpha[s]$

- α has the form $(\forall x \phi) \rightarrow \phi_{t}^{x}$ where t is sub. for x.
- Assume $M \in(\forall x \phi)[s]$, so $M \neq \phi[s[x \mid m]]$ for all $m \in M$.
- Thus, $M \mathcal{M}=\phi[s[x \mid s(t)]]$
- Need Thu 2.6.2: $M \neq \phi[s(x \mid s(t)]] \leftrightarrow M / F \phi_{t}^{x}[s]$
- Thus $M_{\vDash} \phi_{t}^{*}[s]$, so $M \vDash \alpha[s]$.

Claim: If α has type $E 1, E 2, Q 2$, Then $M \vDash \alpha[S]$. pt of claim: book+exercises.

Thu 2.52 If (Γ, θ) is a R of I, then $\Gamma k \theta$ pf Let \mathscr{M} be an structure. Assume $M \vDash \Gamma[s]$ for every val s; we must show $M \neq \theta[r]$ for every. Let r be an arbitrary val.

Claim: If (Γ, θ) has type $P C$, then $O M \vDash \theta[r]$. pl see ore book.

Claim: If (Γ, Θ) has type $Q R$, them $M \in \Theta[r]$.
et

- (Γ, θ) has the form
$\theta(\{\varphi \rightarrow \phi\}, \psi \rightarrow(\forall x \phi))$
(2) $(\{\phi \rightarrow \varphi\},(\exists \times \phi) \rightarrow \psi)$ with x not free in Ψ.
- we only treat (1); (2) is an exercise.
- So, assume $M_{\mathcal{M}} \vDash(\psi \rightarrow \phi)[s]^{k}$ for every val s.
Val. \quad Also, assume $M \vDash \psi[r] ;$ TS $M \vDash(v \phi \phi)[r]$
To show $P Y \vDash \forall x \phi[r]$, let $m \in M$; we will show $\mathscr{M} \vDash \phi[r[x \mid m]]$.
observe,

$$
\begin{aligned}
& M \notin \psi[r] \\
& \Longrightarrow m \neq \psi[r[x \mid m]] \\
& \text { by \#\# } \\
& \text { Since } x \text { is not } \\
& \text { free in } \psi \text { (prop 1.7.7) }
\end{aligned}
$$

Also, $\quad M_{\|} \notin \psi[r[x \mid m]]$ or $M \vDash \phi[r[x \mid m]]$ by
(with $s=r[x \mid m])$. Thus, $M \vDash \phi[r[x \mid m]]$.
Theorem 2.5.3. (Soundness) If $\mathcal{E}+\phi$, then $\Sigma \vDash \phi$.
formulas provable from ε.
formically implied
lot $m_{\varepsilon}=\{\phi \mid \Sigma \vdash \phi\}$; let $X=\{\phi \mid$

wis Thu $\subseteq X$; we use Prop 2.2.4, which says that if

1. $\varepsilon \leqslant x_{1}$
2. $\Lambda \subseteq X$, and
3. if (Γ, θ) is a R of I with $\Gamma \leqslant X$, then $\theta \in X$ then Tho $\varepsilon \in X$. Let's check the list.
4. Certainly $M \neq \Sigma \Rightarrow M \vDash \Sigma$, so $\Sigma \subseteq x$.
5. Since $k \wedge$ (Thm2.5.1), it's certainly true that $M \vDash \varepsilon \Rightarrow M_{1} \vDash \Lambda$, so $\Lambda \subseteq X$.
6. Let (Γ, θ) be an R of I with $\Gamma \subseteq X$.

Assume $M \neq \Sigma$; $\omega T S ~ M * \theta$. Now, $\Gamma \subseteq x$, so $M \vDash \varepsilon \Rightarrow M \vDash \Gamma$. Thus $M \vDash \Gamma$, so by The 2.5.2, $M \vDash \theta$.
2.7 Properties of our deductive system

Thm2.7.1 Our ded. system can prove that $=$ is am equiv. relation. That is,
(1) $\vdash \quad x=x$
(2) $\vdash x=y \rightarrow y=x$
(3) $\vdash(x=y \sim y=z) \rightarrow x=z$
pe
see book.
Lem 2.7.2 $\varepsilon t \theta$ iff $\Sigma \vdash \forall x \theta$
pt
$(\Longrightarrow$ Assur $\mathcal{E} \vdash \theta$. Let y be a var. diff. than y.
Deduction of $\forall \times \theta$
(insert oed. of θ)
θ

$$
\begin{aligned}
& y=y \\
& y=y \longrightarrow \theta \\
& y=y \rightarrow \forall x \theta \\
& \forall x \theta
\end{aligned}
$$

$$
N
$$

$$
P C: \theta \rightarrow(y=y \rightarrow \theta)
$$

QR: x not free in $y=y$

$$
P C:(y=y \wedge(y=y \rightarrow \forall x)) \rightarrow \forall x \theta
$$

(\Longleftarrow) Assur $\Sigma \vdash \forall x \theta$. Note Θ is the sine as θ_{x}^{x}
Deduction of θ
(insert dee of $\forall x \theta$)

$$
\begin{array}{ll}
\forall x \theta \\
\forall x \theta \rightarrow \theta_{x}^{x} & Q 1 \\
\theta_{x}^{x} & P C
\end{array}
$$

D

Lemma 2.7.3 Suppose $\Sigma \vdash \theta$. Let $\alpha \in \Sigma$.

1. Suppose $\alpha: \equiv \forall x \beta$. If \mathcal{E}^{\prime} is \sum with α replaced by β, then $\Sigma^{\prime}+\theta$
2. Let $\gamma: \equiv \forall x \alpha$. If ε^{\prime} is ε with α repl. by γ, then $\varepsilon^{\prime} \vdash \theta$.
pt
By the previous lemma $\Sigma^{\prime} 1-\Sigma$, so as $\Sigma+\theta, \Sigma^{\prime}+\theta$.
The 2.7.4 (Deduction Thu) Let θ be a sentence and Σ a set of formulas. Then for any formula ϕ,
$\Sigma v \theta \vdash \phi$ iff $\Sigma+(\theta \rightarrow \phi)$
pt
(\Longleftarrow) Assur $\Sigma \vdash(\theta \rightarrow \phi)$. Then as $\varepsilon \nu \theta \vdash \theta$, $\varepsilon v \theta \vdash \phi(b y P C)$.
\Longleftrightarrow Assur $\sum u \theta+\phi$. Let $X=\left\{\psi\left(\sum \vdash(\theta \rightarrow \psi)\right\}\right.$.
we show The que $\leqslant X$ implying that $\phi \in X$, which is what we wort. We use Prop. 2.2.4.
(1). $\Sigma \subseteq X$ by $P C: ~ \theta \rightarrow$ true is true

$$
\begin{aligned}
& \text { - } \Sigma \leq X \text { by } P C: \theta \rightarrow \text { true } \\
& \text { - } \theta \subseteq X \text { by } P C: \theta \rightarrow \theta \text { is a tautology }
\end{aligned}
$$

(2) $\Lambda \subseteq x$ by $P C$
(3) Let (Γ, α) bean RoIl with $\Gamma \subseteq X$.

Let $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$. So $\varepsilon+\left(\theta \rightarrow \gamma_{i}\right)$

- tree PC:
α is a prop. cons. at $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$

$$
\Rightarrow \theta \rightarrow \alpha \text { is a " ." " }\left\{\theta \rightarrow \gamma_{1}, \ldots, \theta \rightarrow \gamma_{n}\right\}=\Gamma^{\prime}
$$

$$
\Longrightarrow \Sigma \vdash(\theta \rightarrow \alpha) \text { since } \Sigma \vdash \Gamma^{\prime}
$$

$$
\Rightarrow \alpha \in X
$$

- type $Q R$ (minuersal)

$$
\Gamma=\{\beta \rightarrow \delta\} \quad \alpha: \equiv \beta \rightarrow \forall x \delta
$$

with x not free in β.

- type QR (ext.) : similar

Thus, Prop 2.2.4 applies.

$$
\begin{aligned}
& \Gamma \leqslant x \Rightarrow \Sigma \vdash \theta \longrightarrow(\beta \rightarrow \delta) \\
& \Rightarrow \sum \vdash(\theta \wedge \beta) \rightarrow \delta \quad \text { by } P C \\
& \Rightarrow \Sigma \vdash \ominus \wedge \beta \rightarrow \forall x \delta \quad \theta \text { is a sent. } \\
& \left.\Rightarrow \Sigma+\theta \rightarrow \frac{(\beta \rightarrow \alpha \times \delta)}{\alpha}\right) \\
& \Rightarrow \alpha \in X \text {. }
\end{aligned}
$$

