COMPLETNESS ľ CHAPTER 3 COMPACTNESS

$$\frac{\text{Recall:}}{(\text{Soundness})} \quad \text{If } \Sigma \vdash \phi, \text{then } \Sigma \vDash \phi$$
we now aim for the converse.

 r^{5} <u>Thm</u> (completeness) If $Z \models \Phi$, then $\Sigma \vdash \Phi$. Gödel-1929 Dissertation complete ded. system

· We will assume that discountable — this implies that the L-formulas can be enumerated in an infinite list: di, dzi...

Stop D Rephrasing the problem.
(a) we may assure
$$\phi$$
 is a sentence.
why?... Prop 2.7.2 Says $\Sigma \vdash \phi \rightleftharpoons \Sigma \vdash \forall \times \phi$.
Repeating this for all free variables in ϕ , say
 $\chi_{11...,\chi_n}$, $\Sigma \vdash \phi \leftrightarrow \Sigma \vdash \forall \chi_{11...,\chi_n} \phi$ sentence
(b) we may assure Σ consists of sentences
why?... Prop 2.7.3 (sim. to before).
Def: $L := \forall \times (x = x) \land \neg \forall \times (x = x)$. Also, we
say Σ is consistent if $\Sigma \not\vdash L$.

We now expand
$$\Sigma$$
. First, list all to-sandinces
of the form $\exists x \Theta$:
 $\exists x_1 \Theta_1, \exists x_1 \Theta_{2,1}...$
 $eg. \exists x_1 (x_1 e v_1), \exists v_2 (\exists v_3 (v_3 v_2)), ...$
Define
 $v_1 := [\exists x_1 \Theta_1) \rightarrow (\Theta_1)_{C_1}^{X_1}$ Henkin axims
 $v_1 := [\Phi_1 \mid i > 1]$ for $\exists x_1 \Theta_1^{-1}$
 $v_1 := [\Phi_1 \mid i > 1]$ for $\exists x_2 \Theta_1^{-1}$
 $V_1 := [\Phi_1 \mid i > 1]$ for $\exists x_2 \Theta_1^{-1}$
 $V_1 := [\Phi_1 \mid i > 1]$ for $\forall x_1 = [\Sigma_1 : S + i]$ consistent (as t_1 - sent.)
pliden
 $\frac{12}{2}$ Now, let $\Sigma_0 = \Sigma$, and define $\Sigma_1 = \Sigma_0 \cup H_1$.
Imma 3.2.4 Σ_1 is still consistent (as t_1 - sent.)
pliden
 $\frac{1}{2} \cup [\Psi_1, ..., \Psi_m] \Psi_{men}]$ is in consistent (which
 $e_{X_1 : S_1} S = x_1 + i = [\Psi_{men}] + i = [\Psi_m \vee I]$
 $A \longrightarrow \Sigma \cup [\Psi_{1,...}, \Psi_m] + (\Psi_{men}] + i = [\Psi_m \vee I]$
 $A \longrightarrow \Sigma \cup [\Psi_{1,...}, \Psi_m] + (\Psi_{men}] + i = [\Psi_m \vee I]$
 $A \longrightarrow \Sigma \cup [\Psi_{1,...}, \Psi_m] + (\Psi_{men}] + i = [\Psi_m \vee I]$
 $A \longrightarrow \Sigma \cup [\Psi_{1,...}, \Psi_m] + (\Psi_{men}] + i = [\Psi_m \vee I]$
 $\Rightarrow \Sigma \cup A \vdash \exists \forall \Theta \land \Box \Theta_{\Sigma}$
 $\Rightarrow \Sigma \cup A \vdash \exists \forall \Theta \land \Box \Theta_{\Sigma}$
 $\Rightarrow \Sigma \cup A \vdash \exists \forall \Theta \land \Box \Theta_{\Sigma}$
 $\Rightarrow \Sigma \cup A \vdash \exists \forall \Theta \land \Box \Theta_{\Sigma}$
 $\Rightarrow \Sigma \cup A \vdash \exists \forall \Theta \land \Box \Theta_{\Sigma}$
 $\Rightarrow \Sigma \cup A \vdash \exists \forall \Theta \land \Box \Theta_{\Sigma}$
 $\Rightarrow Z \cup A \vdash \exists \Theta_{\Sigma}$ for $\exists a new unrable$
 $(as in prev. proof)$

Let T be the set of variable free
$$d'$$
-terms.
Define $t_1 \sim t_2 \iff (t_1 = t_2) \in \Sigma'$.
Lemma v is an equivalence red. on T.
PH book+exercises.

Ex Suppose
$$d_{NYT} \in d'$$
.
Let $t_1 = c_1 + c_2$, $t_2 = c_8$ and $t_1 = t_2 \in Z'$.
Let's look at the function S. We have
 $Et_1 = Et_1 T$ (since $t_1 = t_2 \in S'$)
and we want to show
 $S^{M}(Et_3) = S^{M}(Et_2)$ (i.e. that $St_1 = St_2 \in S'$).
By Lem. 3.2.5, it suffices to show $Z' + St_1 = St_2$.
 $x = y \rightarrow Sx = Sy$ E2
d'surfaces
 $f'(my/consist)$
 $t_1 = t_2$ Z'
 $f'(my/consist)$
 $t_1 = t_2$ Z'
 $Tog' = t_1 = t_2$
 $f'(my/consist)$
 $t_2 = t_2$ Z'
 $Tog' = t_1 = t_2$ Z'
 $Tog' = t_2 = St_1 = St_2$ PC
Relations $R^{M}(t_1, \dots, t_{n-1})$ if $R = t_1 \dots t_n \in Z'$.
Relations $R^{M}(t_1, \dots, t_{n-1})$ if $R = t_1 \dots t_n \in Z'$.
Recall defined to show this is well defined.
 $R = Prop 3.2.6$ $M \neq Z'$!!
We proceed to y induction on the complexity
of σ .
 $Y = Recall def. of M.$

A useful fact: if Sisavaf into M and t is
avar. - free term, then
$$\overline{S(t)} = [t]$$
.
. need to think about vaf's ... not too hard but uses def. of f^{M} and c^{M}

()
$$\sigma := t_1 = t_2$$
 where t_1, t_2 are variable free terms
since σ is a sentence
Then,
 $\sigma = t_1 = t_2 \in \Sigma'$ if $t_1 \sim t_2$
if $t_1 = [t_2]$
if $\xi = [t_1] = [t_2]$
if $\xi = [t_1] = [t_2]$
if $\xi = [t_1] = [t_2]$ for all var into \mathcal{M}
if $\xi = [t_1] = [t_2]$

(2)
$$\sigma := R(t_{1}, ..., t_{n})$$
 where $t_{1}, ..., t_{n}$ are var. free
Then
 $\sigma = R(t_{1}, ..., t_{n}) \in \mathcal{E}'$; $f f(t_{1}, ..., t_{n}) \in \mathbb{R}^{\mathcal{M}}$ deform
 $if f(t_{1}, ..., t_{n}) \in \mathbb{R}^{\mathcal{M}}$
 $if f(t_{1}, ..., t_{n}) \in \mathbb{R}^{\mathcal{M}}$

$$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

nen,

(b)
$$\sigma := \forall x \varphi$$
.
(a) Assue $\sigma \in \mathcal{E}'$, with $\mathcal{M} \models \sigma$.
 $\mathcal{M} \models \sigma$ iff $\mathcal{M} \models \forall x \varphi(s)$ for any $m \in \mathcal{M}$.
iff $\mathcal{M} \models \varphi(s[x | m])$ for any $m \in \mathcal{M}$.
iff $\mathcal{M} \models \varphi(s[x | [t])]$ for any vor for
iff $\mathcal{M} \models \varphi(s[x | [t])]$ for any vor for
iff $\mathcal{M} \models \varphi(s[x | [t])]$ for any vor for
term t
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(a tech, result
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(b) $\forall m 2.62$
is vorthere
iff $\mathcal{M} \models \varphi(s)$ bor $d(s)$
iff $\mathcal{M} \models \varphi(s)$ by $\forall m 2.62$
(b) $\forall m 2.62$
(b) $\forall m 2.62$
(c) $\forall m 2.62$
is vorthere
iff $\mathcal{M} \models \varphi(s)$ bor $d(s)$
iff $\mathcal{M} \models \varphi(s)$
(de)) Assue $\sigma \notin \Sigma'$ with $\forall \sigma$.
 $\sigma \notin \Sigma'$ and $\varphi(s)$ is $\forall m 2.62$
 $\Rightarrow \forall \gamma = \sigma \varphi(s)$
 $\Rightarrow \forall \gamma = \varphi(s)$
 $\Rightarrow \forall \gamma =$

$$\begin{array}{c} \overrightarrow{} & \overbrace{}^{2} \overleftarrow{} & \overrightarrow{} & \overrightarrow{$$

Stop 3) Restrict
$$\mathcal{M}$$
 to \mathcal{J} .
We know that $\mathcal{M} \models \mathcal{L}'$ and $\mathcal{L} \subseteq \mathcal{L}'$. Also
 \mathcal{M} is an \mathcal{J} -structure. Write $\mathcal{M}|_{\mathcal{J}}$ for
 \mathcal{M} viewed as an \mathcal{J} -structure (just forget
about the extra constant symbols... but the
elements are still in $\mathcal{M}|_{\mathcal{J}}$. Then, it's not
hard to see that $\mathcal{M}|_{\mathcal{J}} \models \mathcal{L}$.

Theorem (compactness) Let
$$\Sigma$$
 be any set of formulas.
Then, Σ has a model iff every finite subset of
 Σ has a model.
PL
 (\Longrightarrow) If $\mathcal{M} \models \Sigma$, then certainly $\mathcal{M} \models \Sigma_0$ for every $\Sigma_0 \subseteq \Sigma$.
 (\Longleftrightarrow) If $\mathcal{M} \models \Sigma$, then certainly $\mathcal{M} \models \Sigma_0$ for every $\Sigma_0 \subseteq \Sigma$.
 (\bigstar) Suppose every finite subset of Σ has a model
(which may be different for different subsets.
We argue by contradiction — assue Σ has
no model. Then $\Sigma \models \bot$, and
 $\Sigma \models \bot \Longrightarrow \Sigma \vdash \bot$ (completeness)
 $\Longrightarrow \Sigma_0 \vdash \bot$ for some finite
 $\Sigma_0 \subseteq \Sigma$ b/c
 \bigstar deductions are finite
 $\Longrightarrow \Sigma_0 \models \bot$ (soundness)
 $\Longrightarrow \Sigma_0$ has no model
 $\Longrightarrow \Sigma_0$ has no model
 $\Longrightarrow \Sigma_0$ has no model

la ter

Application 1 the property of "being Sinite" is not
a first order property!
Ex Let
$$J_G = \{0, 1, 1\}$$
 The axioms for a group are

g.h. g⁻¹
$$\chi_{1} := (\chi \cdot \chi) \cdot Z = \chi \cdot (\chi \cdot Z)$$

 $\chi_{2} := \chi \cdot 1 = \chi \wedge 1 \cdot \chi = \chi$
 $\chi_{3} := \chi \cdot \chi^{-1} = | \wedge \chi^{-1} \cdot \chi = |$
 $\boxed{Question}|_{1}^{1}$ is there a set of formulas Σ such that
 $G \models \Sigma$ iff G is a group?
Answer 1: yes of course, $\Sigma = \chi \chi_{1} \chi_{2}, \chi_{3}^{2}$.

Question 2) is there a set of formulas 2 s.t.
Question 2) is there a set of formulas 2 s.t.
G = E iff G is a group with at most 4 elements?
Auswer 2: yes: Z = {Y₁, Y₂, Y₃, o } wher

$$\sigma := \exists x, x_2, x_3, x_4, \forall y (y = x, v y = x_3, v y = x_4)$$

Question³: is there a set of formulas
$$\Sigma$$
 s.t.
 $G \models \Sigma$ iff Gisan infinite group?
Answer3 yes: $\Sigma = ZY_1, Y_2, Y_3 U \Sigma = X_1 ... X_k (kicjck (x_i \pm x_j)) kiz
Question 3: is there a set of formulas Σ s.t.$

Think !! ...

Suppose such a Z does exist. Define

$$d_2 := 3x_1 3x_2 (x_1 + x_2)$$

 $d_3 := 3x_1 3x_2 3x_3 [(x_1 + x_2) \land (x_2 + x_3) \land (x_1 + x_3)]$
Note: $G \models d_k$ iff G has at least k elements.
Define $\hat{\Xi} = \Xi \cup \{ d_k \} \models \{ \} \ge 3$. We apply compactness...
Let $A \subseteq \hat{\Xi}$ be finite. Let m be the largest
integer s.t. $d_m \in A$. Let Cm be the cyclic
group with m elements. Then
 $Cm \models d_k$ for all $k \le m$
 $Cm \models Z$ (by assumption)
Since, $A \subseteq \Xi \cup \{ d_{1}, ..., d_{k} \}$ and Cm
Models the RHS, we find $Cm \models A$. Thus,
every finite subset of $\hat{\Xi}$ has a model,
So by compactness, $\hat{\Sigma}$ has some model \hat{G} .
 $As \hat{G} \models d_k$ for all $k \ge 2$, \hat{G} is infinite.
But also, $\Sigma \subseteq \hat{\Sigma}$, so $\hat{G} \models \Sigma$, a contradiction.
Thus, the finite groups can not be axiomatized.

Ex Let Lo= {<}. The axioms for a linear order are ri= AKAA (Ked n K= A n A ex) L2:= Yx ~(x <x) L3:= 4×4442 [(×<4~4<2) -> ×<2] Then, there is no set of axioms 2 s.t. M ⊨ E iff Misa finite livear order. pt you do this ... follow previous example. The Suppose E is a set of formulas S.t. E has models of arbitrarily large finite order. Then Z has an infite model. you do this... follow previous example. 5 In other words, you can not axiomitize the property of being finite. You can not axiomitize Application Z a single structure (in a 1st

Ex Let's think about IN interpreted in the usual way w.r.t. ZNT.

Question 1: Is there a set of formulas E
s.t.
$$\mathcal{M} \models \Sigma$$
 iff $\mathcal{M} \cong \mathbb{N}$?
Think... what is the most restrictive Σ we could try?
Det Let \mathcal{M} be an Z-structure. The Heory
of \mathcal{M} is $Th(\mathcal{M}) = \{ \phi \mid \mathcal{M} \models \phi \text{ for } \phi \text{ and } form. \}$.
What if we use $\Sigma = Th(\mathbb{N})$? ... we should
have a chance ... right?
Suppose Σ exists; so, $\mathcal{M} \models \Sigma$ iff $\mathcal{M} \cong \mathbb{N}$.
Expand \mathbb{I}_{NT} to $\mathbb{Z} = \mathbb{Z}_{NT} \cup \{ C \}$. Let Γ be
the following set of formulas:
 $d_{0} \equiv O \land C$
 $d_{1} \equiv T = SO \land C$
 $d_{2} \equiv T SO \land C$
Claim: Every finite subset of $\Sigma \cup \Gamma$ has a model.
PH Let $A \in \Sigma \cup \Gamma$ be finite.
 \circ let k be largest s.t. $d_{k} \in A$.
 $- thus A \subseteq \Sigma \cup \{ k_{0}, ..., k_{k} \}$
 $Make N an Z-structure by defining $\mathbb{C}^{N} = kattender = 1$
 $- thus, = \overline{O} \stackrel{\sim}{\Sigma} \stackrel{\sim}{C} \stackrel{\sim}{N}, ..., = K \stackrel{\sim}{\Sigma} \stackrel{\sim}{C} \stackrel{\sim}{N} = Also, \stackrel{\sim}{N} \models \Sigma$ (by assurption)$

• This NEA.

 \square

By compactness, $\Sigma \cup \Gamma$ has a model, say \mathcal{M} . Notice that $\mathcal{M} \models \Sigma$, and $\overline{n} < C^{\mathcal{M}}$ for all $n \in \mathbb{N}$. No such element like this exists in \mathbb{N} , so $\mathcal{M} \neq \mathbb{N}$. Thus, No there is no set Σ of formulas, s.t. $\mathcal{M} \models \Sigma$ iff $\mathcal{M} \doteq \mathbb{N}$.

$$\frac{\text{Def}}{\text{Hat}} \text{ If } \mathcal{M} \text{ and } \mathcal{M} \text{ are } \mathcal{I} - \text{structures, we say} \\ \text{Hat} \mathcal{M} \text{ and } \mathcal{M} \text{ are elementarily equivalent} \\ \text{if } Th(\mathcal{M}) = Th(\mathcal{N}). \text{ we denote this by} \\ \mathcal{M} = \mathcal{N} \\ \mathcal{M} = \mathcal{N} \\ \text{Maximum equivalent} \quad \mathcal{M} = \mathbb{N} \xrightarrow{} \mathcal{M} \cong \mathbb{N}.$$

* we just saw that " -" 7" 7" The Infact, a different construction (using compactness) can be used to show that.

Theorem If
$$\mathcal{N}$$
 is infinite, then there exists
structures $\mathcal{M}(at arbitrarily large cardinality)$
s.t. $\mathcal{M} \equiv \mathcal{N}$ but $\mathcal{M} \neq \mathcal{N}$.

Ex Constructing hyperreals.
Let
$$J_{0R} = \xi_{1} \cdot , 0, 1, \zeta_{3}^{*}$$
 (ordined ring)
The Goal: Create an J_{0R} structure \mathbb{R}^{*} s.t.
(D) $\mathbb{R} \subseteq \mathbb{R}^{*}$
(E) $\mathbb{R} \equiv \mathbb{R}^{*}$
(E) $\mathbb{R}^{*} = \mathbb{R}^{*}$
(E) \mathbb{R}^{*} contains infinite simal elements, i.e.
there is an $\xi \in \mathbb{R}^{*}$ s.t.
 $0 \leq \xi \leq r$ for every ref.
 $- \log t |\mathbb{R}| \text{ and } d_{\mathbb{R}} - \text{st. by delinining}$
 $C_{r}^{\mathbb{R}} = r$.
 $- \log t |\mathbb{R}| = Th(\mathbb{R}) \text{ in } J_{\mathbb{R}}$.
 $* \text{ thus } \forall x (x \neq 0 \Rightarrow \exists y (xy = 1)) \in \xi_{1}$
 $* \text{ and also } C_{3} \leq C_{\mathbb{R}} \in \xi_{1}$
 $* \text{ can you give we another?}$
 $\circ \text{Add one more constant, which will ultimately point to an inflitesimal element.
 $J = J_{\mathbb{R}} \cup \{a\}$
 $\circ \text{ Let } \Gamma$ be the following (very large) set of sentences
 $\xi_{2} = \xi_{1} \frac{\cos a}{\cos a} \approx c_{1} | r \in \mathbb{R}, r > 0$ }
 $Z_{r}$$

Del Any element a R* satisfying orarr Vretk is called an infinitesimal element.

$$\frac{Ex}{Ex} \text{ Let } s, t \in \mathbb{R}. \text{ Then } r = s \text{ if } |s-t| = a$$

for some infinitesimal $a \in \mathbb{R}^{*}$.
$$\frac{et}{1s-t!} \text{ infinitesimal if } f |s-t| < r \text{ for all } r \in \mathbb{R}$$

$$if f |s-t| = 0 \quad (since s-t > 0).$$

$$if f |s-t| = 0 \quad (since s-t > 0).$$