COMPLEXNESS

CHAPTER 3

$$
\varepsilon
$$

3.2 completeness

Recall:
(soundness) If $\Sigma+\phi$, then $\Sigma \vDash \phi$
We now aim for the converse.
of our deductive system
\rightarrow Thm (completeness) If $\mathcal{E} \phi$, then $\Sigma t \phi$.
Gödel-1929
Dissertation
the del of a complete died. System

The Proof begins

- Fix ε and ϕ.
- We will assume that \mathcal{L} is counta ble-this implies that the \mathcal{f}-formulas can be enumerated in an infinite list: $\alpha_{1}, \alpha_{2}, \ldots$
Step O Rephrasing the problem.
(a) we may as sure ϕ is a sentence.
why?... Prop 2.7 .2 says $\quad \sum \vdash \phi \longleftrightarrow \sum \vdash \forall x \phi$. Repeating this for all free variables in ϕ, say $x_{1}, \ldots, x_{n}, \varepsilon+\phi \leftrightarrow \varepsilon \vdash \forall x_{1}, \ldots, x_{n} \phi$ senten ce
(b) We may assume E consists of sentences why?... Prop 2.7.3 (sim. to before).
Def: $\perp: \equiv \forall x(x=x) \wedge \neg \forall x(x=x)$. Also, we say \sum is consistent if $\sum \nvdash 1$.
（c）We may assume ϕ is \perp
Why？．．．Suppose we com prove $\Sigma \vDash \perp \rightarrow \Sigma \vdash \perp$ ． Let＇s prove $\Sigma \vDash \phi \longrightarrow \mathcal{\vdash} \boldsymbol{\ell}$ from this．

$$
\begin{aligned}
& \Sigma \vDash \phi \Rightarrow \varepsilon \cup(\neg \phi) \vDash \perp \text { (bic there are } \\
& \text { no models of } \\
& \Rightarrow \sum u(\neg \phi) \vdash \perp \\
& \Rightarrow \Sigma+\phi \\
& \text { そし (} \neg \text { ゆ)) } \\
& \text { "prod by cont." } \\
& \text { Exec. 2.7.1 } \# 4
\end{aligned}
$$

Recap：We will prove the completeness the if we can prove：

$$
\varepsilon \vDash \perp \rightarrow \varepsilon \vdash \perp
$$

for ε any set of sentences．Looking at the contrapositive we find that

To prove the completeness Thu，it suffices to prove that
if Σ is a consistent set ot sentences， then \sum has a model．

Let Σ be a consistent set of \mathcal{L}－sentences． we must construct a model．

Rough Outline
Step I We enlarge both \mathcal{L} and Σ to $\mathcal{\mathcal { L }}$ ' and Σ^{\prime}.
Stop 2 We build a model M at \mathcal{E}^{\prime} in \mathcal{L}^{\prime}. The universe is essentially the set of variable-free terms of \mathcal{L}^{\prime}.
step 3 we restrict \mathscr{M} to \mathcal{L}.

The Proof Continues

Step 1 Let $\mathcal{L}_{0}=\mathcal{L}$. Define - Henkin constants

$$
\text { (1.1) } \mathcal{L}_{1}=\mathcal{L}_{0} \cup\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}
$$

where each c_{i} is a constant symbol not already info.
Lemma 3.2.3 \mathcal{E} is still consistent as \mathscr{L}_{1} - sentences. pf: dea

Suppose not. Let $D_{1}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be a ded. of t with α_{i} an \mathcal{J}_{1}-formula.

- $\exists k$ st. the new constantsoceuriz in D, ore among c_{1}, \ldots, c_{k}
- Let v_{1}, \ldots, v_{k} be variables not occuring in D_{1}.
- Define $D_{0}=\left(\left(\alpha_{1}\right)_{v_{1} \ldots, v_{k}}^{c_{1} \ldots, c_{k}}, \ldots,\left(\alpha_{m}\right)_{v_{1} \ldots-v_{k}}^{c_{1} \ldots \ldots c_{k}}\right)_{s+i l l 1}$
- A little work show= $D_{0} t$ 1, but now D_{0} is in \mathcal{L}_{0}. Contradiction.

We now expand Σ. First, list all \mathcal{L}_{0}-sentences of the form $\exists \times \theta$:

$$
\begin{array}{ll}
& \exists x_{1} \theta_{1}, \exists x_{2} \theta_{2}, \ldots \\
\text { eg. } & \exists v_{7}\left(v_{7}<v_{7}\right) \\
x_{1} & \left.\frac{\exists v_{3}}{\theta_{1}} \frac{\left.\exists v_{5}\left(v_{3}=v_{5}\right)\right)}{\theta_{2}}\right), . .
\end{array}
$$

Define

$$
\text { - } \psi_{i}: \equiv\left(\exists x_{i} \theta_{i}\right) \rightarrow\left(\theta_{i}\right)_{c_{i}}^{x_{i}}
$$

Henkin axioms ${ }^{*} c_{i}$ is - witness

$$
\text { - } H_{1}=\left\{\psi_{i} \mid i \geqslant 1\right\}
$$

$$
\text { for } \exists x_{c} \theta_{i}
$$

(1.2) Now, let $\Sigma_{0}=\Sigma$, and define $\Sigma_{1}=\Sigma_{0} \cup H_{1}$

Lemma 3.2.4 $\sum_{\text {, }}$ is still consistent (asf,-sent.) pfidea
suppose not. Let m be smallest integer sit.
$\sum \cup\left\{\psi_{1}, \ldots, \psi_{m}, \psi_{m+1}\right\}$ is in consistent (which exists since deductions are finite). Now

$$
\begin{aligned}
& \sum \cup\left\{\psi_{1}, \ldots, \psi_{m+1}\right\}+1 \\
& \sum \sum\left\{\psi_{11 \ldots}, \psi_{m}\right\} \vdash\left(\psi_{m+1} \rightarrow 1\right) \quad \text { ped. Tl } \\
& \Rightarrow \sum \cup \psi_{m} \vee \perp \\
& \sum \cup \neg \psi_{m+1}
\end{aligned}
$$

Died. Theorem
(ψ_{m+1} is ot form $\exists x \theta \rightarrow \theta_{c}^{x}$)

$$
\begin{aligned}
& \Rightarrow \quad \sum \cup A+\exists \times \theta \wedge \sim \theta_{c}^{x} \\
& \Rightarrow \frac{\sum \cup A t \quad \neg \forall x \sim \theta}{\text { and }} \\
& \varepsilon \cup A \vdash \neg \theta_{c}^{*} \\
& \Rightarrow \quad \sum \cup A+\neg \theta_{z}^{x} \\
& \text { for } z \text { a new variable } \\
& \text { (ain preu.proof) }
\end{aligned}
$$

$$
\begin{array}{ll}
\Longrightarrow & \sum \cup A \vdash \forall z \neg \theta_{z}^{x} \\
& \left(\forall z \neg \theta_{z}^{x} \rightarrow \neg\left(\theta_{z}^{x}\right)_{x}^{z}\right. \\
& \text { is a Q1 axiom }) \\
\Rightarrow & \sum \cup A+\neg\left(\theta_{z}^{x}\right)_{x}^{z}=\neg \theta
\end{array}
$$

$\Rightarrow \sum v\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ is in consistent, but $m+1$ was least such.

Thus Σ_{1} is consistent.
(1.3) Repeat

6 extend with D- many new constants each tine

$$
\begin{aligned}
& \cdot \mathcal{L}_{0} \subseteq \mathcal{L}_{1} \subseteq \mathcal{L}_{2} \subseteq \cdots \\
& \cdot \mathcal{L}_{0} \subseteq \mathcal{L}_{1} \subseteq \varepsilon_{2} \subseteq \cdots
\end{aligned}
$$

C extend with Hank in axioms H_{2} for the \mathcal{L}_{1}-sentences
Each Σ_{i} remains consistent, with sore proof as before.

$$
\begin{aligned}
& \cdot \mathcal{J}^{\prime}=\bigcup_{i \in \mathbb{N}} \mathcal{L}_{i} \\
& \cdot \hat{\varepsilon}=\bigcup_{i \in \mathbb{N}} \Sigma_{i}
\end{aligned}
$$

(1.4) Further extend $\widehat{\mathcal{E}}$ to Σ^{\prime} to ensure either $\sigma \in \mathcal{\Sigma}^{\prime}$ or $\sim \sigma \in \Sigma^{\prime}$ for all 2^{\prime}-sentences σ.

- Emmer ate the \mathbf{L}^{\prime}-sentences:

$$
\begin{aligned}
& \sigma_{1}, \sigma_{2}, \ldots \\
& \therefore \Sigma^{0+1}= \begin{cases}\Sigma^{k} \cup\left\{\sigma_{k}\right\} & \text { if } \Sigma^{k} \cup\left\{\sigma_{k}\right\} \text { is cons. } \\
\Sigma^{k} \cup\left\{\neg \sigma_{k}\right\} & \text { olw. }\end{cases} \\
& \cdots \Sigma^{\prime}=\bigcup_{k \in \mathbb{N}} \Sigma^{k}
\end{aligned}
$$

Lemma For every formula $\sigma, \sigma \in \mathcal{E}^{\prime}$ or $\rightarrow \sigma \in \mathcal{E}^{\prime}$. Also, Σ^{\prime} is consistent (as are each ε^{k}). pt exercise.

Lemma 3.2 .5 If σ is a $\varepsilon^{\prime} \operatorname{sen} \operatorname{sence}$, then

$$
\sigma \in \varepsilon^{\prime} \text { ifs } \varepsilon^{\prime}+\sigma
$$

Af (\Longrightarrow) clear. So, assume $\varepsilon^{\prime} \vdash \sigma$. If $\sigma \notin \varepsilon^{\prime}$, the $\rightarrow \sigma \in \mathcal{E}^{\prime}$. Thus, $\Sigma^{\prime} \vdash \sigma$ and $\varepsilon^{\prime} \vdash \neg \sigma$ so $\Sigma^{\prime} \vdash \perp$. But ε^{\prime} is Consistent. D

Step 2 Constructing a modelot $\mathcal{E}^{\prime}\left(\inf \mathcal{L}^{\prime}\right)$
Idea: the constant symbols are kind of the elements of the miverse. But, what when we use functions: we need $C_{1}+C_{7}$ to a gain be in our miverse. Okay, so instead of constants, let's use variable-free terms. close. what if

$$
c_{1}+c_{7}=c_{8}
$$

is in E'? we need $c_{1}+c_{7}$ to be the sane element as Co, bert it cant be b/c they are different seq. of symbols. So...

Let T be the set ot variable free \mathcal{L}^{\prime}-terms.
Define $t_{1} \sim t_{2} \longleftrightarrow\left(t_{1}=t_{2}\right) \in \mathcal{E}^{\prime}$.

Lemma ~ is an equivalence red. on T. Pf booktexercises.

Universe of M
$M=T / \sim$, i.e. M is the set of $\sim-e_{\text {equivalence }}$ classes of T. We write these as $[t]$ for $t \in T$.

Ex if + is a binary funct. sym. in \mathcal{L}^{\prime} and C_{1}, c_{7} are constants in \mathcal{L}^{\prime}, then

$$
\left[c_{1}\right],\left[c_{7}\right],\left[c_{1}+c_{7}\right] \in M .
$$

Also, if $\sum_{0}^{C_{1}+C_{1}=L_{0}} c_{1}$, $\left.c+c_{-}\right]=\left[c_{8}\right]$. symbols in language actual elements in M.

Constants $c^{m}=[c]$.
Functions $f^{M}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[f\left(t_{1}, \ldots, t_{n}\right)\right]$

Ex

$$
\left.\left[c_{1}\right]+\mathcal{M}_{\left[c_{7}\right]}\right]=\left[c_{1}+c_{7}\right]
$$

Is this well-defined? It is - let's just 100 k at an example.

Ex Suppose $\mathcal{L}_{N+} \leqslant \mathcal{L}^{\prime}$.
Let $t_{1}=c_{1}+c_{7}, t_{2}=c_{8}$ and $t_{1}=t_{2} \in \Sigma^{\prime}$.
Let's look at the function S. We have

$$
\left.\left[t_{1}\right]=\left[t_{2}\right] \quad \text { (since } t_{1}=t_{2} \leftarrow \varepsilon^{\prime}\right)
$$

and we want to show

$$
\left.s^{m}\left(\left[t_{1}\right]\right)=s^{m}\left(\left[t_{2}\right]\right) \text { (i.e. that } s t_{1}=s t_{2} \in \varepsilon^{\prime}\right) \text {. }
$$

By lem. 3.2.5, it suffices to show $\varepsilon^{\prime} r s t_{1}=S t_{2}$.

$$
x=y \rightarrow S_{x}=S_{y} \quad E Z
$$

\mathcal{L}^{\prime}-sentences

$$
\begin{aligned}
& \forall x \forall y\left(x=y \rightarrow S_{x}=S_{y}\right) \quad 2.7 .2 \\
& t_{1}=t_{2} \longrightarrow S t_{1}=S t_{2} \quad Q \mid \text { (twice) } \\
& t_{1}=t_{2} \quad \Sigma^{\prime} \\
& S t_{1}=S t_{2} \quad P C
\end{aligned}
$$

Relations $R^{O R}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$ if $R t_{1} \ldots t_{n} \in \mathcal{E}^{\prime}$.
(Again, me need to show this is well defined.
\rightarrow Prop 3.2.6 $\quad \mathcal{M} \vDash \Sigma^{\prime}$!
we prove $\sigma \in \Sigma^{\prime}$ if $M \vDash \sigma$. (for all sentences σ) pl
we proceed by induction on the complexity ot σ.

* Recall def. at M.

Ausetul fact: if sis a val into \mathcal{M} and t is avar.- free term, then $\bar{S}(t)=[t]$.

- need to think about val's... not toonard but uses deft. of f^{m} and c^{m}
(1) $\sigma: \equiv t_{1}=t_{2}$ where t_{1}, t_{2} are variable-free terms since σ is a sentence
Then,

$$
\begin{aligned}
\sigma \equiv t_{1}=t_{2} \in \mathcal{E}^{\prime} \quad & \text { iff } t_{1} \sim t_{2} \\
& \text { iff }\left[t_{1}\right]=\left[t_{2}\right] \\
& \text { iff } \bar{s}\left(t_{1}\right)=\bar{s}\left(t_{2}\right) \quad \text { for all var into } M \\
& \text { iff } M \neq t_{1}=t_{2}
\end{aligned}
$$

(2) $\sigma: \equiv R\left(t_{1}, \ldots, t_{n}\right)$ where t_{1}, \ldots, t_{n} are var. free Then
(3) $\sigma: \equiv \neg \alpha$ where $\alpha \in \mathcal{E}^{\prime}$ iff $M \vDash \alpha$ (by induction)

Then,

$$
\begin{aligned}
\sigma \in \Sigma^{\prime} & \text { iff } \alpha \notin \Sigma^{\prime} \\
& \text { iff } M \neq \alpha \\
& \text { iff } M \neq \neg \alpha \\
& \text { iff } M \vDash \sigma
\end{aligned}
$$

(4) $\sigma: \equiv \alpha \vee \beta$
similar.
(5) $\sigma: \equiv \forall \times \phi$.
$\left(\Rightarrow\right.$) Assume $\sigma \in \Sigma^{\prime}$. wTS $M \vDash \sigma$.

$$
M \vDash \sigma \text { iff } \quad M \vDash \forall \times \phi
$$

iff $M \vDash \forall x \phi[s]$ for say raf
ifs $\mathcal{M} \vDash \phi[s[x \mid m]]$ for any $m \in M$.
inf $M \vDash \phi[s[x \mid[t]]]$ for any var. free term t
iff $M \neq \phi[s[x \mid \bar{s}(t)]] \begin{gathered}\text { term } \\ \text { by the useful } \\ \text { fact }\end{gathered}$
fewer quantifiers inf $M^{\prime}=\phi_{t}^{x}[s]$
iff $M \vDash \phi_{t}^{x}$
by The 2.62
(a tech. result for soundness) since ϕ_{t}^{*} is var. free.
inf $\phi_{t}^{x} \in \Sigma^{\prime}$ by induction
iff $\Sigma^{\prime} \vdash \phi_{t}^{x}$ Lemma 3.2. 5

Now, $\sigma \in \Sigma^{\prime}$ so $\Sigma^{\prime} \vdash \forall x \phi$. By (Q1), $\Sigma^{\prime} \vdash \forall x \phi \rightarrow \phi_{t}^{x}$. (Note t is var. free socertainly sub. for x.) Thus $\mathcal{L}^{\prime} \vdash \phi_{t,}^{x}$, so $M \vDash \sigma$.
(\Leftarrow) Assume $\sigma \notin \Sigma^{\prime}$. WTS oM $\nLeftarrow \sigma$.

$$
\begin{aligned}
\sigma \notin \Sigma^{\prime} & \Longrightarrow \neg \sigma \in \Sigma^{\prime} \quad \text { Nose } \neg \sigma \equiv \neg \forall x \phi \\
& \Rightarrow \Sigma^{\prime} \vdash \neg \sigma \quad \text { un. } 3.2 .5 \\
& \Rightarrow \Sigma^{\prime} \vdash \neg \forall x \phi \\
& \Rightarrow \Sigma^{\prime} \vdash \exists x \neg \phi \sigma \quad \neg \forall x \neg \neg \phi \\
& \Longrightarrow \exists x \neg \phi \in \Sigma^{\prime} \\
& \Rightarrow \exists x \neg \phi \rightarrow \neg \phi_{c}^{x} \in \Sigma^{\prime} \quad \begin{array}{c}
\text { for some dentin } \\
\text { constant } c
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \Sigma^{\prime}{ }^{\prime} r \exists x \neg \phi \wedge\left(\exists x \neg \phi \rightarrow \neg \phi_{c}^{x}\right) \quad \text { Lemma } 3.2 .5 \\
& \Longrightarrow \Sigma^{\prime} \vdash \neg \phi_{c}^{x} \\
& \Rightarrow \neg \phi_{c}^{x} \in \mathcal{E}^{\prime} \\
& \Longrightarrow \phi_{c}^{x} \notin \mathcal{S}^{\prime} \\
& \Rightarrow \eta \nexists \phi_{c}^{r} \\
& \text { by induction - } \phi_{c}^{x} \\
& \text { has less quantifiers } \\
& \Rightarrow m \not \vDash \forall \times \phi
\end{aligned}
$$

Step 3 Restrict M to \mathcal{L}.
We know that $\mathcal{M} \vDash \mathcal{E}^{\prime}$ and $\Sigma \leq \Sigma^{\prime}$. Also M is an \mathcal{L}^{\prime}-structure. Write $\left.m\right|_{\mathcal{L}}$ for \mathcal{M} viewed as an \mathcal{H}-structure (just forget about the extra constant symbols... but the elements are still in $\left.M()_{\mathcal{L}}\right)$. Then, it's not hard to see that $\left.m\right|_{\mathcal{L}} \vDash \Sigma$.

The Proof Ends
3.3 compactness (A.K.A. Dessert)

Theorem (compactness) Let \sum be any set of formulas. Then, \sum hasa model iff every finite subset of E has a model.
pt
\Longleftrightarrow If $M \vDash \varepsilon$, then certainly $M \vDash \varepsilon_{0}$ for every $\varepsilon_{0} \subseteq \Sigma$.
(\Longleftarrow) Suppose every finite subset of Σ has a model
(which may be different for different subsets. We argue by contradiction - assur ε has no model. Then $\Sigma \vDash \perp$, and

$$
\left.\begin{array}{rlrl}
\Sigma 11 & \Longrightarrow \Sigma \vdash 1 & & \text { (completeness) } \\
& \Longrightarrow \varepsilon_{0} \vdash 1 \quad & \text { for sore finite } \\
\Sigma_{0} \subseteq \varepsilon \text { b/c }
\end{array}\right)
$$

\Longrightarrow Es has nomodeh

$$
\Rightarrow \Leftarrow
$$

\square

Cor. 3.3.2 $\sum 1=\theta$ iff there isafinite $\varepsilon_{0} \leq \varepsilon$ st. $\varepsilon_{0} t=\theta$.
pt

$$
\begin{aligned}
\Sigma F \theta & \Leftrightarrow \Sigma t \theta \\
& \left.\Leftrightarrow \varepsilon_{0}+\theta \text { for some finite } \varepsilon_{0} \leq \varepsilon \sum \begin{array}{c}
\text { deductions } \\
\text { are finite }
\end{array}\right] \text { clear }
\end{aligned}
$$

$$
\Leftrightarrow \varepsilon_{0} \hbar \theta \text { for some finite } \varepsilon_{0} \leq \varepsilon
$$

Application 1 the property of "being finite" is not a first order property!

Ex Let $\mathcal{Z}_{G}=\left\{\left\{_{p},-1,1\right\}\right.$ The axioms for a group are

$$
\begin{aligned}
g \cdot h \quad & g^{-1} \quad \gamma_{1} \\
& \equiv(x \cdot y) \cdot z=x \cdot(y \cdot z) \\
\gamma_{2} & \equiv \equiv x \cdot 1=x \wedge 1 \cdot x=x \\
\gamma_{3} & \equiv x \cdot x^{-1}=1 \wedge x^{-1} \cdot x=1
\end{aligned}
$$

Questionll is there a set of formulas \mathcal{E} such that

$$
G \not F \mathcal{E} \text { iff } G \text { is a group? }
$$

Answer 1: yes of course, $\Sigma=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$.
Question 2. is there a set of formulas \mathcal{E} s.t.
$G \ell \mathcal{E}$ iff G is a group with at most 4elements?
Answer 2: yes: $\mathcal{E}=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \sigma\right\}$ wher

$$
\sigma: \equiv \exists x_{1}, x_{2}, x_{3}, x_{4} \forall y\left(y=x_{1} \cup y=x_{2} \cup y=x_{3} \cup y=x_{4}\right)
$$

Question': is there a set of formulas \mathcal{E} s.t. $G \vDash \mathcal{E}$ iff G isan infinite group?
Answer 3 yes: $\Sigma=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\} \cup\left\{\exists x_{1} \cdots x_{k}\left(\bigwedge_{12 i<j<k}\left(x_{i} \neq x_{j}\right)\right) \mid k 2 \pi\right\}$
Question 3: is there a setof formulas \sum st.
$G \vDash \mathcal{E}$ if G is a finite group?
Think!!...

Suppose such a \sum does exist. Define

$$
\begin{aligned}
& \alpha_{2}: \equiv \exists x_{1} \exists x_{2}\left(x_{1} \neq x_{2}\right) \\
& \alpha_{3}: \equiv \exists x_{1} \exists x_{2} \exists x_{3}\left[\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3}\right) \wedge\left(x_{1} \neq x_{3}\right)\right]
\end{aligned}
$$

Note: $G \vDash \alpha_{k}$ iff G has at least k elements.
Define $\hat{\Sigma}=\left\{\cup\left\{\alpha_{k} \mid k \geqslant 2\right\}\right.$. We applycampactness...

Let $A \subseteq \hat{\Sigma}$ be finite. Let m be the largest integer sit. $\alpha_{m} \in A$. Let C_{m} be the cyclic group with elements. Then

- $C_{m} \vDash \alpha_{k}$ for all $k \leqslant m$
- Cm\& (by assumption)

Since, $A \subseteq \sum U\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ and C_{m} models the RHS, we find $C_{m} k A$. Thus, every finite subset of $\hat{\Sigma}$ has a model, So by compactness, $\hat{\mathcal{E}}$ has some model \hat{G}.
As $\hat{G} \vDash \alpha_{k}$ for all $k \geqslant 2, \hat{G}$ is infinite. But also, $\Sigma \subseteq \hat{\mathcal{E}}$, so $\widehat{G} \vDash \mathcal{\Sigma}$, a contradiction.

Thus, the finite groups can not be axiomatized.

Ex Let $\mathcal{L}_{0}=\{<\}$. The axioms for a line or order are

$$
\begin{aligned}
& L: \equiv \forall x \forall y(x<y \vee x=y \vee y<x) \\
& L 2: \equiv \forall x \neg(x<x) \\
& L 3: \equiv \forall x \forall y \forall z[(x<y \wedge y<z) \rightarrow x<z]
\end{aligned}
$$

Then, there is no setot axioms \sum sit.

$$
M \vDash \varepsilon \text { iff } M \text { is a finite linear order. }
$$

pt
you dothis... follow previous example.
The Suppose \mathcal{E} is a set of formulas s.t. \sum has models of arbitrarily large finite order. Then Σ has an in lite model.

+ you do this... follow previous example.
θ In other words, you can not axiomitize the property of being finite.

Application 2 You can not axiomitize a single structure (in a $1^{\text {st }}$ order way).

Ex Let's think about \mathbb{N} interpreted in the usual way writ. $\mathcal{I}_{\text {NT }}$.

Question 1: Is there a set ot formulas \mathcal{E}
sit.

$$
M \vDash \Sigma \text { iff } \quad M \cong \mathbb{N} ?
$$

Think... What is the most restrictive \sum we could try?
Let let $M M$ bean \mathcal{L}-structure. The theory of \mathcal{M} is $T h(M)=\{\phi \mid \mathcal{M} \vDash \phi$ for ϕ an \mathcal{L}-form. $\}$.
what if we use $\Sigma=\operatorname{Th}(\mathbb{N})$?... we should have a chance...right?

Suppose Σ exists; so, $\mathscr{M} \vDash \Sigma$ iff $\mathcal{M} \cong M$.
Expand $\mathcal{L}_{N T}$ to $\mathcal{L}=\mathcal{L}_{N T} \cup\{c\}$. Let Γ be the following set of formulas:

$$
\begin{array}{lr}
\alpha_{0}: \equiv \quad & 0<C \\
\alpha_{1}: \equiv & T=50<C \\
\alpha_{2}: \equiv & \overline{2} 550<C
\end{array}
$$

Claim: Every finite subset of $\Sigma \cup \Gamma$ has a model. pt Let $A \subseteq \sum \cup \Gamma$ be finite.

- let k be largest sot. $\alpha_{k} \in A$.

$$
\text { - thess } A \leq \sum \cup\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}
$$

- Make \mathbb{N} an \mathcal{L}-structure by defining $C^{\mathbb{N}}=k+1$
- thus, $0^{\mathbb{N}}<^{\mathbb{N}} c^{\mathbb{N}}, T^{\pi}<^{\pi} c^{\mathbb{N}}, \ldots, \bar{k}^{\mathbb{N}}<^{\tilde{N}} c^{\pi}$
- so, $\mathbb{N} \vDash\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$
- Also, $\mathbb{N} \vDash \sum$ (by assumption)
- Thus $\mathbb{N} \vDash A$.
 Notice that $M \vDash \Sigma$, and $\bar{n}<C^{M}$ for all $n \in \mathbb{N}$. No such element like this exists in \mathbb{N}, so $\mathscr{M} \neq \mathbb{N}$. This, No there is no set \sum of formulas, s.t.

$$
M \vDash \sum \text { inf } M \cong \mathbb{N}
$$

\square
Bet If M and \mathcal{N} are \mathcal{L}-structures, we say that M and N are elementarily equivalent if $\operatorname{Th}(M)=\operatorname{Th}(n)$. We denote this by

$$
\eta \equiv n
$$

* we just saw that $M \equiv \mathbb{N} \nRightarrow \cong \mathbb{N}$.

Infact, a different construction (using compactness) cam be used to show that...

Theorem If \mathcal{A} is infinite, then there exists structures M (of arbitrarily large cardinality) sit. $M \equiv N$ but $M \nVdash N$.

Application 3 Creating superstructures with special elements.

Ex Constructing hyperreals.
Let $\mathcal{L}_{O R}=\{+, \cdot, 0,1,<\}$ (ordered ring)
The Goal: Create an $\mathcal{L}_{0 e^{-}}$structure \mathbb{R}^{*} sit.
(1) $\mathbb{R} \subseteq \mathbb{R}^{*}$
(2) $\mathbb{R} \equiv \mathbb{R}^{*}$
(3) \mathbb{R}^{*} contains in finite simal elements; ie. there is an $\varepsilon \in \mathbb{R}^{*}$ st.
$0<\varepsilon<r$ for every $r \in \mathbb{R}$.

- Expand $\mathcal{L}_{O R}$ to $\mathcal{L}_{\mathbb{R}}=\mathcal{L}_{O R} \cup\left\{c_{r} \backslash r \in \mathbb{R}\right\}$.
- make \mathbb{R} an $\mathcal{L}_{\mathbb{R}}$-st. by detinining

$$
\begin{aligned}
& C_{r}^{\mathbb{R}}=r \\
& \text { - let } \Sigma_{1}= T h(\mathbb{R}) \text { in } \mathcal{L}_{\mathbb{R}} \\
& \text { * thus } \forall x(x \neq 0 \rightarrow \exists y(x y=1)) \in \varepsilon_{1}
\end{aligned}
$$

$$
* \text { and also } c_{3}<c_{\pi} \in \Sigma_{1}
$$

* can you give me another?
- Add ore more constant, which will ultimately point to an infitesimal element.

$$
\mathcal{L}=\mathcal{L}_{\mathbb{R}} \cup\{a\}
$$

- Let Γ be the following (very large) set of sentences

$$
\Sigma_{2}=\left\{\left.\frac{0<a \wedge a<c_{r}}{\alpha_{r}} \right\rvert\, r \in \mathbb{R}, r>0\right\}
$$

Claim: Every finite subset of $\Sigma_{1} \cup \Sigma_{2}$ has a model.
pt Let $A \subseteq \Sigma_{1} \cup \Sigma_{2}$ be finite.

- There is a smallest $r_{0} \in \mathbb{R}$ st. $\alpha_{r_{0}} \in A$
- thus $A \subseteq \Sigma_{1} \cup\left\{0<a<r \mid r \geqslant r_{0}\right\}$
- make \mathbb{R} an \mathcal{L}-structure by defining

$$
a^{\widetilde{R}}=\frac{r_{0}}{2}
$$

- thus $0^{\overline{\mathbb{R}}}<a^{\widetilde{\mathbb{R}}}<r_{0} \leqslant r^{\overline{\mathbb{R}}}$ for all $r \geqslant r_{0}$
- thus $\tilde{\mathbb{R}} \vDash \alpha_{r}$ for all $r \geqslant r_{0}$
- also $\mathbb{R} \not \varepsilon_{1}=T h(\mathbb{R})$
- Thus $\widetilde{\mathbb{R}} \vDash A$.

By compactness, $\Sigma_{1} \cup \Sigma_{2}$ has a model, which we call \mathbb{R}^{*}. Note that
(1) $\mathbb{R} \subseteq \mathbb{R}^{*}$ (kind of... if we identify

$$
r \longleftrightarrow c_{r}^{\mathbb{R}^{*}}
$$

(2) $\mathbb{R}^{*} \equiv \mathbb{R}$ since $\mathbb{R}^{*} \vDash T h(\mathbb{R})$
(3) \mathbb{R}^{*} con tains the infintesimal element

$$
\begin{array}{r}
\mathbb{R}^{*} \mathbb{R}^{*} \text {, since } \mathbb{R}^{*} \vDash\left\{0<a<\mathbb{C}_{0} \mid r \in \mathbb{R}, r>0\right\} \\
\text { which re think aras } \\
\text { just } r \text {. }
\end{array}
$$

Done!
Def Any element $a \in \mathbb{R}^{*}$ satisfying $0<a<r \quad \forall r \in \mathbb{R}$ is called an infinitesimal element.

Ex Let $s, t \in \mathbb{R}$. Then $r=s$ iff $|s-t|=a$ for sone in finitesimal $a \in \mathbb{R}^{*}$.
pt
$|s-t|$ infinitesimal if $f|s-t|<r$ for all $r \in \mathbb{R}$

$$
\begin{aligned}
& \text { if }|s-t|=0 \quad \text { (since } s-t \geqslant 0) \text {. } \\
& \text { iff } s=t
\end{aligned}
$$

* So two real 4 s are equal iff they are infinitesimally close.

Bet Any element $\alpha \in \mathbb{R}^{*}$ with $\alpha>r$ for all $r \in \mathbb{R}$ is called infinite.

Ex $\quad a \in \mathbb{R}$ is infinitesimal if $f a^{-1}$ is infinite. !... and explain why a^{-1} exists.
(1) \mathbb{R} models $\forall x(x \neq 0 \rightarrow \exists y(x y=1))$.

Since $\mathbb{R}^{*} \equiv \mathbb{R}, \mathbb{R}^{*}$ models this to 0 !
(2) \mathbb{R} models $\forall x \forall y \quad\left(0<x<y \leftrightarrow 0<y^{-1}<x^{-1}\right)$ Since $\mathbb{R}^{*} \equiv \mathbb{R}, \mathbb{R}^{*} \operatorname{model}$ s this too!
Thus
$0<a<r$ for all $r \in \mathbb{R}$ iff $0<r^{-1}<a^{-1}$ for all $r \in \mathbb{R}$ $r \geq 0$
$r>0$
iff $0<s<a^{-1}$ for all $s \in \mathbb{R}$ $s>0$. B

