Incompleteness
CHAPTER 4 what How

Let ϕ be any $\mathcal{L}_{N T}$-formula.

The Question (take 1)
If ϕ is a true statement about N, can we prove it?

* Prove it? Starting from what? What are our starting axioms?
- Notice that if we use the axioms N, then we already saw that

$$
\mathbb{N} F \neg(x<x) \text { but } N \not \forall \neg(x<x)
$$

This, N is not strong enough to prove all true statements about \mathbb{N}.

- However, if we use the axioms $T h(\mathbb{N})$, then clearly

$$
N \not F \phi \quad \text { iff } T h(\mathbb{N})+\phi
$$

So, $\operatorname{Th}(\mathbb{N})$ is strong enough, but if you think about it, it's too strong. We don't know what's in Th($\mathbb{N})$), es. is $\varphi: \equiv{ }^{v}$ every $x>1$ is the sum ot two primes" in $\operatorname{Th}(\mathbb{N})$?

- Also if the axioms are inconsistent, then they can prove anything.
"Def" Aset A of formulas is recursive or decidable if there exists an algorithm that can decide whether or not an arbitrary ϕ is in A or not.
* This is a notion of "not too complicated".

Ex The axiom set N is recursive but $T h(N)$ is not.
not too complicated
The Question (take 2)
... but can be more complicated than N.
Does there exist a consistent and recursive set of formulas A such that

$$
\mathbb{N} \vDash \phi \quad \text { implies } A \vdash \phi ?
$$

All $\mathcal{Z}_{N T}$ - formulas

No!

Theorem (Godel's First Incompleteness theorem) Let A be any consistent and recursive set of $\mathcal{L}_{\mathrm{NT}_{T} \text {-formulas. Then, there is a }}$ sentence θ such that $\mathbb{N} \vDash \theta$ but $A \not \forall \theta$.

* a set of nonlogical axioms A in a language \mathcal{I} is called complete if for every \mathcal{I}-sentence σ, $A \vdash \sigma$ or $A t \neg \sigma$. So, Giodel's theorem is about the incompleteness of the axioms A, not the deductive system (which is not incomplete).

From here on, every thing is about \mathbb{N} and $\mathcal{L}_{N T}$.
4.2 complexity of $\mathcal{L}_{N T}$ - formulas

Def (Bounded Quantification) Suppose x does not occur in the term t. The bounded quantifiers are

$$
(\forall x<t) \phi, \frac{(\forall x \leqslant t) \phi}{(}, \frac{6}{(\exists x<t)} \phi,(\exists x \leqslant t) \phi
$$

shorthand for

$$
\forall x[(x<t) \vee x=t) \rightarrow \phi]
$$

Ex $\frac{(\exists x<\overline{5})}{1}(\underbrace{\forall y}_{\text {unbounded }}(x+y=y))$
bounded
We now define sone special classes of formulas

All $\mathcal{L N T}^{-}$-formulas

change to π
Ret The ()-formulas is the smallest set of formulas such that
(1) it contains all atomic formulas and their negations
(2) it is closed under V and Λ

$$
\begin{aligned}
& \text { it is closed under } v \text { and } N \\
& \text { (e.g. } \alpha, \beta \text {-formulas implies } \alpha v \beta \text { is a } \sum \text {-form.) }
\end{aligned}
$$

(3) it is closed under all bounded quantifiers

$$
\text { (e.g. } \alpha \text { a } \sum \text {.formula implies }(\forall x<t) \alpha \text { is }
$$

a \sum-formula, where x isnotin t)
(4) it is closed under unbounded (\exists).

$$
\text { (e.g. } \alpha \text { a E-formula implies }(\exists x) \alpha \text { is }
$$

$$
\text { a } \Sigma \text {-formula.) }
$$

* for Π-formulas, (4) changes to unbounded \forall
* for Δ-formulas, (4) is removed, so no unbounded quantifiers.
we've seen that there are $\mathcal{L}_{N T}-\operatorname{sen}$ fences ϕ s.t. $N F \neq \phi$ but $N \not \forall \phi \quad($ es. $\phi: \equiv(\forall x)(\neg x<x))$ However, we'll see that if ϕ is a Δ-formula then

$$
I N F \phi \text { implies } N+\phi \text { and this is }
$$ true for

AND $\mid N \not F \phi$ implies $N \vdash \neg \phi \quad \sum$-formulas!

Ex Generate examples ineach area:
All $\mathcal{L}_{\text {NT }}$-formulas

Note: In Exercise 4.2.1, (b) is not a L-form, but it is logically equiv. to one.
Ex Let $\alpha: \equiv(\forall x<\overline{17}) \frac{(\exists y)(x+y=\overline{17})}{\beta}$

- α is a \sum-formula
- $\neg \alpha$ is not a Σ - or π-formula. However, if we consider logical equivalence,

$$
\begin{aligned}
\neg \alpha & \equiv \neg(\forall x<\overline{7}) \beta \\
& \equiv \neg(\forall x)(x>\overline{17} \vee \beta) \\
& \equiv(\exists x)(x<\overline{17} \wedge \neg \beta) \\
& \equiv \frac{(\exists x<\overline{17})((\forall y)(x+y \neq \overline{17}) \quad \pi \text {-formula }}{\Phi}
\end{aligned}
$$

Thus $\neg \alpha \vDash \phi$ and $\phi \vDash \neg \alpha$, so $\neg \alpha$ is logically equivalent to a Π-formula

Lemma If α is a \sum form. then $\neg \alpha$ is logically equivalent to a Π-formula, and vice versa.

* what does this wean for Δ-formulas?
* Sometimes, Σ, π, Δ-formulas are defined a S anything logically equivalent to...

