5.3 Representable (and $\begin{gathered}\text { definable) sets and functions }\end{gathered}$
why Σ-formulas and Δ-formulas,
First answer we know that $N+\phi \Longrightarrow \mathbb{N} \vDash \phi$ but the converse is not true for all formulas ϕ. However, it is true for Σ-sentences.

Prop. 5.3.13 Let ϕ be a Σ-sentence. If $\mathbb{N} \vDash \phi$, then $N+\phi$.
pe Jerilyn -thanks!
More is true for Δ-formulas.
Prop. 5.3.14 Let ϕ be a Δ-sentence.

- If $\mathbb{N} \vDash \phi$, then $N+\phi$.
- If $\mathbb{N} \not \nexists \phi$, then $N \vdash \neg \phi$

Second answer Representable sets can be defined by Σ-formulas. \qquad

Representable and definable sets
Let $f(x)=2^{x}$. This function is not in our language - can we still use it in sentences? Yeah, kind of...

Let α be the formula

$$
\alpha(x, y): \equiv y=E(\overline{2}, x) . \quad \begin{gathered}
1 \\
2 \text { tines }
\end{gathered}
$$

Notice that, for all $a \in \mathbb{N}$,

$$
\mathbb{N} F(\forall y) \frac{[\alpha(\bar{a}, y)}{\rho} \longleftrightarrow \frac{\left.y=\overline{\partial^{a}}\right]}{\mathcal{N}^{N}+}
$$

N thinks $\alpha(a, y)$
iN thinks $y=2^{a}$ is true

* this says that as for as \mathbb{N} is concerned,

$$
y=2^{x} \text { and } \alpha(x, y)
$$

are the same. We say α defines $f(x)=2^{x}$.

Infact, looking back at Lem. 2.8.4, we find that

$$
N \vdash(\forall y)\left[\alpha(\bar{a}, y) \longleftrightarrow y=\overline{2^{a}}\right]
$$

* So as for as any model of N is concerned, $y=2^{x}$ and $\alpha(x, y)$ by soundness are the same. We say α represents $f(x)=2^{x}$.

Bet If $A \subseteq \mathbb{N}^{k}$, we say

- A is definable in \mathbb{N}, if there is an $\mathcal{L}_{N T}$-formula

$$
\begin{aligned}
& \varphi\left(x_{1}, \ldots, x_{k}\right) \text { s.t. for all } a_{1}, \ldots, a_{k} \in \mathbb{N} \\
& \qquad\left(a_{1}, \ldots, a_{k}\right) \in A \text { iff } \mathbb{N} \neq \varphi\left(\overline{a_{1}}, \ldots, \bar{a}_{k}\right) .
\end{aligned}
$$

- A is weakly representable in N, if there is an $\mathcal{L}_{N T}$ - form.

$$
\begin{aligned}
& \varphi\left(x_{1}, \ldots, x_{k}\right) \text { s.t. } \forall a_{1}, \ldots, a_{k} \in \mathbb{N} \\
& \left(a_{1}, \ldots, a_{k}\right) \in A \text { iff } N \vdash \varphi\left(\bar{a}_{1}, \ldots, \overline{a_{k}}\right) .
\end{aligned}
$$

- A is representable in N, if

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{k}\right) \in A \Longrightarrow N r \varphi\left(\bar{a}_{1}, \ldots, \overline{a_{k}}\right) . \\
& \left(a_{1}, \ldots, a_{k}\right) \in A \Longrightarrow N r \neg \varphi\left(\overline{a_{1}}, \ldots, \overline{a_{k}}\right) .
\end{aligned}
$$

* Remember, if $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function, then

$$
f(x)=y \quad \text { if }(x, y) \in f .
$$

So, f is definable if there is an $\mathcal{L}_{N T}$-formula

$$
\begin{aligned}
& \varphi(x, y) \text { s.t. } \forall a, b \in \mathbb{N} \\
& f(a)=b \text { iff } \mathbb{N} F \varphi(\bar{a}, \bar{b}) \\
& \text { All subests of } \mathbb{N}^{k}
\end{aligned}
$$

Proposition 5.3.6 A function is representable iff it is weakly representable.

Ex Show that the set of primes in \mathbb{N} is definable withe Δ-formula.

Need a formula Prime (x) s.t. $\forall a \in \mathbb{N}$
a is prime if $\mathbb{N} F$ Prime (\bar{a}).
Take l

$$
\operatorname{Prime}(x): \equiv x>T \wedge \forall y[((\exists z)(x=y z)) \rightarrow(y=\bar{\top} \vee y=x)]
$$

This works, but it's not a Δ-formula.

Take 2

$$
\operatorname{Prime}(x): \equiv x>T \wedge \quad \forall y \leqslant x[((\exists z \leqslant x)(x=y z)) \rightarrow(y=T \vee y=x)]
$$

why take the extra tine tofind a Δ-formula?

Corollary 5.3.15 If $A \subseteq \mathbb{N}^{k}$ is deft inable by a Δ-formula, then A is representable.

Ex The set of primes of \mathbb{N} is representable (since we showed it has a Δ-definition).
$4.5,5.5-5.8$ Coding, Gödel numbering, and N

Remember the goal...

Theorem (Gödel's First In completeness theorem)
Let A be any consistent and recursive set of $\mathcal{L N T}_{\mathrm{N}}$-formulas. Then, then is a sentence θ such that $\mathbb{N} \vDash \theta$ but $A \not \forall \Theta$.

The idea is to choose
$\theta: \equiv$ "This sentence is not deducible from A"

* so if θ is declucible from A then $N F \theta$ by soundness, but then...?... contradiction... So θ must not be deducible from A. Done.
* but anyway, how could we write such a Sentence?

We will need to "code" $\mathcal{L N T}_{\text {- }}$ formulas, and ultimately, deductions too.

For example

$$
0=0 \quad \Gamma_{0}=07=2^{8} 3^{1025} 5^{1025}
$$

घ And we want to do this in a way that's "easy" to decode.

Coding strings of characters

STEP (1) Strings of characters \longrightarrow strings of numbers
$L_{N T}$
N

7	V	\forall	$=$	0	5	+	\cdot	E	$<$	$($	$)$
1	3	5	7	9	11	13	15	17	19	21	23

Ex

$$
T=v_{3} \rightarrow=50 v_{3} \rightarrow(7,11,9,6)
$$

STEP (2) Strings of numbers \longrightarrow single number * remember we want to be a ble to de code.

Let Let $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$. Define

$$
\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{\begin{array}{l}
1 \text { if } k=0 \\
\frac{p_{1}^{a_{1}+1} p_{2}^{a_{2}+1} \ldots p_{k}^{a_{k+1}}}{p_{i} \text { is the } i^{\text {th }} \text { prime }} \text { if } k>0
\end{array}\right.
$$

* add 1., ex, vent so we "see" I prime for each a_{i}

Ex

$$
\begin{aligned}
(7,11 & 1,6) \rightarrow\langle 7,11,9,6\rangle=
\end{aligned} \begin{aligned}
& 83^{8} 5^{12} 7^{7} \\
& 1094161288657500000000
\end{aligned}
$$

Ex

$$
0=0 \rightarrow=00 \rightarrow(7,9,9) \rightarrow\langle 7,9,9\rangle=2^{9} 3^{16}, 5^{10}
$$

295245000000000

$$
2^{9} 3^{10} 5^{10} \neq r_{0}=07
$$

This allows us to code any sequence of charaters.
However, we want to be more intentional when coding terms and formulas (and deductions).

Deft 5.7.1 (Gödel Numbering) Let s be any string of $\mathcal{L}_{N T^{-}}$symbols. We (recursively) define rs^{s} as follows:

$$
\begin{aligned}
& \langle 1, r \alpha\urcorner\rangle \text { if } s: \equiv(\neg \alpha) \text { for } \alpha \text { an } \text { tiNT form. }^{\prime} \text {. } \\
& \langle 3,\ulcorner\alpha\urcorner,\ulcorner\beta\urcorner\rangle \text { is } s: \equiv(\alpha \vee \beta) \\
& \left.\left.\left\langle 5, r v_{i}\right\urcorner, r_{\alpha}\right\urcorner\right\rangle \text { is } s: \equiv\left(\forall v_{i}\right)(\alpha) \\
& \left.\left.\left\langle 7_{1}, r_{t_{1}}\right\urcorner, r_{t_{2}}\right\rangle\right\rangle \text { if } s: \equiv=t_{1} t_{2} \text { with } t_{1}, t_{2} \text { terms } \\
& \langle 9\rangle \text { if } s: \equiv 0 \\
& \left.\left\langle 11, r_{t}\right\rangle\right\rangle \quad \text { if } s: \equiv S_{t} \\
& \left.\left\langle 13, \Gamma_{t_{1}}\right\urcorner, r_{t_{2}}\right\urcorner \text { if } s: \equiv+t_{1} t_{2} \\
& \left.\left.\left\langle 15, \Gamma t_{1}\right\urcorner, \Gamma_{t_{L}}\right\rangle\right\rangle \quad s: \equiv \cdot t_{1} t_{2} \\
& \left.\left.\left\langle 17, \Gamma t_{1}\right\urcorner, \Gamma_{t_{2}}\right\urcorner\right\rangle \quad s: \equiv E t_{1} t_{2} \\
& \left.\left\langle 19, r_{t_{1}} \cdot r_{t_{2}}\right\urcorner\right\rangle \quad s: \equiv\left\langle t_{1} t_{2}\right. \\
& \left\langle 2_{i}\right\rangle \\
& s:=v_{i}
\end{aligned}
$$

otherwise

Ex compute
(a) $\Gamma_{0}=07$
(b) $\Gamma_{T}=v_{3} \quad$ (c) $r^{r}<0+7$
(a) $\left.0=0 \rightarrow 00 \rightarrow\left\langle 7, \Gamma_{0}\right\rangle, \Gamma_{0} 7\right\rangle=\langle 7,\langle 9\rangle,\langle 9\rangle\rangle$

$$
=\left\langle 7,2^{10}, 2^{10}\right\rangle=2^{8} 3^{2^{+1} 5^{10}+1}=2^{8} \cdot 3^{1025} \cdot 5^{1025}
$$

(b) $\left.r_{T}=v_{3}\right\urcorner$

$$
\begin{aligned}
T & \left.\left.=v_{3} \rightarrow \text { so }=v_{3} \rightarrow=\operatorname{sov}_{3} \rightarrow\left\langle 7, r_{50}\right\urcorner, r_{v_{3}}\right\rangle\right\rangle \\
& \left.=\left\langle 7,\left\langle 11, r_{0}\right\rangle\right\rangle,\langle 6\rangle\right\rangle=\langle 7,\langle 11,\langle 9\rangle\rangle,\langle 6\rangle\rangle \\
& =\left\langle 7,\left\langle 11,2^{10}\right\rangle, 2^{7}\right\rangle=\left\langle 7,2^{12} 3^{2^{10}+1}, 2^{7}\right\rangle \\
& =2^{8} \cdot 3^{2^{12} 3^{2^{0}+1}+1} \cdot 5^{2^{7}+1}
\end{aligned}
$$

(c) $\Gamma<0 t^{7}=3$

Ex Suppose ϕ is a formula such that

$$
\left.\Gamma_{\phi}\right\urcorner=2^{20} \cdot 3^{10+1} \cdot 5^{2^{12} 3^{2^{12} 3^{2^{10}+1}+1}+1}
$$

Decode to find ϕ.

$$
\begin{aligned}
& \Gamma \phi=\left\langle 19,2^{10}, 2^{12} 3^{2^{12} 3^{10}+1}\right\rangle \\
& =\left\langle 19,\langle 9\rangle,\left\langle 11,2^{12} 3^{2^{10}+1}\right\rangle\right\rangle \\
& =\left\langle 19,\langle 9\rangle,\left\langle 11,\left\langle 11,2^{10}\right\rangle\right\rangle\right\rangle \\
& =\langle 19,\langle 9\rangle,\langle 11,\langle 11,\langle 9\rangle\rangle\rangle\rangle \\
& \left.\left.=\left\langle 19, r_{0}\right\urcorner,\left\langle 11,\left\langle 11, \Gamma_{0}\right\urcorner\right\rangle\right\rangle\right\rangle \\
& =\left\langle 19,{ }^{\circ}{ }^{7}{ }^{7},\left\langle 11, \Gamma \text { SO }{ }^{7}\right\rangle\right\rangle \\
& =\left\langle 19, \Gamma_{07}, \Gamma \text { sol }\right\rangle \\
& =r<0 \text { ss } 0^{7} \\
& \text { so } \phi: \equiv 0<\overline{2}
\end{aligned}
$$

Some important sets
Let $V A R I A B L E=\{a \in \mathbb{N} \mid a=\Gamma V\urcorner$ for some variable $v\}$
Let $T_{E R M}=\left\{a \in \mathbb{N} \mid a=r_{t} \backslash\right.$ for some $\mathcal{L}_{N T}$-term $\left.z\right\}$
Let Formula $=\left\{a \in \mathbb{N} \mid a=r_{\phi}\right\urcorner$ " " "formula $\left.\phi\right\}$

Proposition All three of the above have a Δ-definitio n-thus they are representable.
pt for $V A R I A B L E$
consider the formula

$$
\begin{aligned}
v_{1}(x) & : " x=2^{y+1} \text { for some even } y>0 " \\
& \equiv \exists y((\exists z)(y=z \cdot z) \wedge y>0 \wedge x=E(2,5 y))
\end{aligned}
$$

Then, $\quad \forall a \in \mathbb{N}$,

$$
a \in V A R I A B L E \text { iff } \mathbb{N} F V_{1}(\bar{a})
$$

So v, defines varIABLE, but it's not a Δ definition. Try again...

$$
v_{2}(x): \equiv \exists(y<x)((\exists z)(y=z \cdot z) \wedge y>0 \wedge x=E(2, s y))
$$

Remember, we want to be able to formalize
$\theta: \equiv$ "This sentence is not deducible from A"

Coding Deduction S
We need
(1) to code a sequence of formulas $D=\left(\phi_{1}, \ldots, \phi_{k}\right)$
(2) to know which sequences are actually deductions

Regarding (1)...

$$
r D^{\urcorner}=5^{\left.r \phi_{1}\right\urcorner} \cdot 7^{\left.r \phi_{2}\right\urcorner} \cdots P_{k+2}^{\left.\Gamma \phi_{k}\right\urcorner}
$$

* note that Godel numbers of terms and formulas are all even
* numbers whose smallest prime factor is 3 are garbage
* So, if the smallest prime factor is 5, then the number represents a sequence

Regarding (2)...
Proposition If A is a representable set of axioms, then

$$
D_{\text {EDuction }}=\{(c, f) \mid
$$

$\left.\begin{array}{l}\text { cis the code for } a \\ \text { deduction from } A\end{array}\right\}$ $\left.\begin{array}{l}\text { deduction from } A \\ \text { of a formula with }\end{array}\right\}$
is representable. Godel number f

The Goal

Gödel's list Incompleteness The If A is any consistent and recursive set of $\mathcal{I}_{N T}$-formulas, then there is a sentence Θ s.t. $N F \theta$ but $A \nvdash \theta$.

The Idea
$\theta: \equiv$ "This sentence is not deducible from A"

The Setup

Let A be any consistent set ot $\mathcal{L}_{N T}$-formulas.

Bet

$$
\begin{aligned}
A \times \operatorname{lomOFA} & =\{r \alpha\urcorner \mid \alpha \in A\} \\
T_{H m_{A}} & =\{r \phi \mid N
\end{aligned}
$$

Det A is recursive if $A \times 10 m O_{F} A$ is representable.

Lemma 6.35 If A is recursive, then Tum $_{A}$ is definable by a \sum-formula which we call ohm $\operatorname{th}_{A}\left(v_{1}\right)$. That is,

$$
n \in \operatorname{THM}_{A} \text { iff } \mathbb{N}=\operatorname{tima}_{A}(\bar{n})
$$

(3) This does not say THM is representable (which it would be if there were a Δ-definition).

The proof of 6.3.5 makes use of our work in previous chapter, together with the following Lemma.

Lemma C.3.3 If $A \subseteq \mathbb{N}$ is representable, then it has a Σ-definition.

Lemma 6.2.2. (Gödel's Self Reference Lemma)
Let $\psi\left(v_{1}\right)$ be any $\mathcal{L}_{N T}$-formula (wit honky v, free). Then there is a sentence θ sit.

$$
N \vdash\left(\theta \longleftrightarrow \psi\left(\overline{r^{\prime}}\right)\right)
$$

* This, θ says " φ is true about me".

Applying this when ψ is 7 th m $m_{A}\left(v_{1}\right)$, we hame

$$
N \vdash\left(\theta \longleftrightarrow \neg+\operatorname{tm}_{A}\left(\overline{r^{\gamma}}\right)\right)
$$

so here, θ says "I am not a theorem deducible from A "

Theorem 6.3.6. Gödel's First Incompleteness Theorem
If A is any consistent and recursive set of $\mathcal{L}_{W T}$-formulas, then there is a sentence θ st.

$$
\mathbb{N} F \theta \text { but } A \not Y \theta
$$

䊀
we may assume $A \vdash N$ (o/w we are done).
consider $T_{H M}=\left\{r \phi^{\urcorner} \mid A+\phi\right\}$. By 6.3.5, there exists a \sum-formula the $m_{A}\left(v_{1}\right)$ sit.

$$
n \in T_{H m_{A}} \text { ifs } \mathbb{N} F+h m_{A}(\bar{n})
$$

Apply ing the self-Ref. Lemma to \neg th m $_{A}\left(v_{1}\right)$, there exists θ sit.

$$
N \vdash\left(\theta \longleftrightarrow \neg \operatorname{thm}_{A}\left(\overline{\Gamma \theta^{\urcorner}}\right)\right.
$$

By Soundness,

$$
N F\left(\theta \longleftrightarrow \neg \operatorname{thm}_{A}\left(\overline{r^{7}}\right)_{;}\right.
$$

so

$$
\begin{aligned}
& \mathbb{N} F \Theta \quad \text { iff } \mathbb{N} \not \not \neq \operatorname{thm}_{A}\left(\overline{\Gamma^{\prime}}\right) \\
&\text { iff } \left.\Gamma_{\Theta}\right\urcorner \notin T_{H M_{A}} \\
& \text { ifs } A \not \nLeftarrow \theta .
\end{aligned}
$$

If $\mathbb{N} \mid \vDash \theta$ then $A \not \forall \theta$ and we ore done. Thus towards a contradiction, assume $\mathbb{N} \not \neq \theta$ and $A \vdash \theta$.

Then $|N|=\operatorname{thm}_{A}(\overline{\Gamma \theta \bar{\gamma}})$. Remember, the $A\left(\overline{\theta^{\top}}\right)$ is a \sum-sententence, so by Prop 5.3 .13 $N \vdash \operatorname{thm}_{A}\left(\overline{r_{\theta} 7}\right)!$ Then, by choice of θ, $N \vdash \neg \theta$, and as $A \vdash N, A+\neg \theta$. Thus $A+\ominus \wedge \neg \theta$, which contradicts the fact that A is consistent.

