SYNTACTIC INCOMPLETENESS

CHAPTER 5

GROUNDWORK

Let $f(x) = a^{x}$. This function is not in our language — can we still use it insentences? Yeah, kind of...

Let
$$d$$
 be the formula Remember: $\overline{2} = \underset{i}{\overset{5}{5}} 0$
 $d(x,y) := y = E(\overline{2}, x).$ 2-times

Nodice that, for all a C IN,

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) \leftrightarrow \gamma = \overline{a}^{a} \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) \leftrightarrow \gamma = \overline{a}^{a} \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) + (\forall \gamma) \right]$$

$$N \neq (\forall \gamma) \left[d(\overline{a}, \gamma) + (\forall \gamma) +$$

Infact, looking back at Lem. 2.8.4, we find that

$$N \vdash (Y_Y)[d(a, y) \leftrightarrow y = 2^a]$$

* 50 as for as any model of N is concerned,
 $y = 2^x$ and $d(x, y)$ by soundness

Def If
$$A \in \mathbb{N}^{k}$$
, we say
• A is definable in \mathbb{N} , if there is an d_{NT} -formula
 $\varphi(x_{11},...,x_{k})$ s.t. for all $a_{11}...,a_{k} \in \mathbb{N}$
 $(a_{11}...,a_{k}) \in A$ iff $\mathbb{N} \neq \varphi(\overline{a}_{11},...,\overline{a}_{k})$.

· A is weakly representable in N, if there is an INT - form. $Q(x_1, \ldots, x_k)$ s.t. $\forall a_1, \ldots, a_k \in \mathbb{N}$ (a11...,ak) EA :39 NH y(a1,...,ak). · A is representable in N, if $(\alpha_1,\ldots,\alpha_k)\in A \implies N \vdash q(\overline{\alpha_1},\ldots,\overline{\alpha_k}).$ $(\alpha_{11},\ldots,\alpha_{k})\in A \implies N \vdash \neg q(\overline{\alpha_{11}},\ldots,\overline{\alpha_{k}}).$ * Remember, if f:IN > N is a function, fren 3001=4 12 (x,y) ef. So, I is definable if there is an dur-formula 4(x,y) S.t. Va, bell f(a) = b; $ff = IN \neq \phi(\overline{a}, \overline{b})$ All subests of INK Definable subsets weakly representable representable

Proposition 5.3.6 A function is representable iff it is weakly representable. EX Show that the set of prines in IN is definable with a Δ-formula. Need a formula Prine(x) s.t. VacIN a isprine iff IN F Prine(a). Takel

4.5,5.5-5.8 coding, Gödel numbering, and N

Remember the goal ...

Theorem (Gödel's First Incompleteness theorem)
Let A be any consistent and recursive
set of
$$I_{NT}$$
-formulas. Then, there is a
Sentence Θ such that $IN \models \Theta$ but $A \neq \Theta$.

The idea is to choose

$$\Theta :=$$
 "This sentence is not deducible from A"
 X so if Θ is deducible from A then $\mathbb{N} \models \Theta$ by
Soundness, but then...?... contradiction...
So Θ must not be deducible from A. Done.
 X but anyway, how could use write such a

$$\mathcal{D} = (\phi_1, \dots, \phi_k) \longrightarrow \mathcal{D}$$

For example And we want to do this in a way that's 'easy" to decode.

$$c = 0 \longrightarrow = 00 \longrightarrow (7, 9, 9) \longrightarrow (7, 9, 9) = 2^{9} 3'', 5'^{0}$$

295 245 000 000 000

$$\frac{3}{2}$$
 $2^{3}3^{0}5^{0} \neq 10 = 0^{7}$

This allows us to code any sequence of charaters. However, we want to be more intentional when coding terms and formulas (and deductions).

Def 5.7.1 (Gödel Numbering) Let 5 be any
string of
$$d_{NT}$$
-symbols. we (recursively)
deline Γ_{ST} as follows:
 $\left(1_{1}\Gamma d_{T} \right)$ is $s:= (T d)$ for $d m d_{NT}$ form.
 $\left(3_{1}\Gamma d_{T} \right)$ is $s:= (d v \beta)$..
 $\left(3_{1}\Gamma d_{T} \right)$ is $s:= (d v \beta)$..
 $\left(3_{1}\Gamma d_{T} \right)$ is $s:= (d v \beta)$..
 $\left(3_{1}\Gamma d_{T} \right)$ is $s:= (d v \beta)$..
 $\left(3_{1}\Gamma d_{T} \right)$ is $s:= t, t_{2}$ with t_{1}, t_{2} terms
 $\left(q \right)$ is $s:= 0$
 $\left(q \right)$ is $s:= 0$
 $\left(1_{1}\Gamma t_{T} \right)$ is $s:= t_{1}t_{2}$
 $\left(1_{2}\Gamma t_{1}^{-1}, \Gamma t_{2}^{-1} \right)$ is $s:= t_{1}t_{2}$
 $\left(1_{3}\Gamma t_{1}^{-1}, \Gamma t_{2}^{-1} \right)$ $s:= t_{1}t_{2}$
 $\left(2_{1}r \right)$ $s:= v_{1}$
 3 $sterwise$

 $(a) \quad 0 = 0 \longrightarrow = 00 \longrightarrow \langle \mp, r_0, r_0, r_0 \rangle = \langle \mp, \langle n \rangle, \langle n \rangle \rangle$ $= \langle \mp, 2^{0}, 2^{0} \rangle = 235^{0} = [2^{8} \cdot 3^{1025} \cdot 5^{1025}]$

$$\begin{array}{l} (\flat) \quad \lceil \tau = \upsilon_{3} \rceil \\ \hline \tau = \upsilon_{3} \implies 50 = \upsilon_{3} \implies = 50 \upsilon_{3} \implies \langle \tau_{1} \lceil 50 \rceil \mid \lceil \upsilon_{3} \rceil \rangle \\ = \langle \tau_{1} \rangle \langle (\iota_{1} \rceil \rceil \rangle \rangle \langle (\varepsilon \rangle \rangle = \langle \tau_{1} \rangle \langle (\iota_{1} \langle \varepsilon \rangle \rangle \rangle \langle (\varepsilon \rangle \rangle \rangle \\ = \langle \tau_{1} \rangle \langle (\iota_{1} \rangle \rangle \langle \varepsilon \rangle \rangle \langle \tau_{1} \rangle \rangle \\ = \langle \tau_{1} \rangle \langle (\iota_{1} \rangle \rangle \langle \varepsilon \rangle \rangle \langle \tau_{1} \rangle \rangle \\ = \langle \tau_{1} \rangle \langle (\iota_{1} \rangle \rangle \langle \varepsilon \rangle \rangle \langle \tau_{1} \rangle \rangle \\ = \langle \tau_{1} \rangle \langle (\iota_{1} \rangle \rangle \langle \varepsilon \rangle \rangle \langle \tau_{1} \rangle \rangle \\ = \langle \tau_{1} \rangle \langle (\iota_{1} \rangle \rangle \langle \varepsilon \rangle \rangle \langle \tau_{1} \rangle \rangle \\ = \langle \tau_{1} \rangle \langle (\iota_{1} \rangle \rangle \langle \varepsilon \rangle \rangle \langle \tau_{1} \rangle \rangle \\ = \langle \tau_{1} \rangle \rangle \\ = \langle \tau_{1} \rangle \langle \tau$$

$$(C) \quad \lceil \langle 0 \rangle \rceil = 3$$

Ex Suppose
$$\phi$$
 is a formula such that
 $\Gamma \phi^{-} = 2^{0} \cdot 3 \cdot 5^{12} \cdot 5$

Decode to find
$$\phi$$
.
 $\Gamma_{\phi} = \langle iq, 2^{D}, 2^{D}, 3^{2}, 3^{2^{D}+1} \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 2^{D}, 3^{2^{D}+1} \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 2^{D}, 3^{2^{D}+1} \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, 2^{D}, 2^{D} \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, 2^{D} \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, 2^{D} \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle, \langle q \rangle \rangle$
 $= \langle iq, \langle q \rangle, \langle ii, 1, \langle q \rangle, \langle q \rangle \rangle$
 $= \langle iq, 1, \langle q \rangle, \langle ii, 1, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, 1, \langle q \rangle, \langle ii, 1, \langle q \rangle, \langle q \rangle \rangle$
 $= \langle iq, 1, \langle q \rangle, \langle ii, 1, \langle q \rangle, \langle q \rangle \rangle$
 $= \langle iq, 1, \langle q \rangle, \langle ii, 1, \langle q \rangle, \langle q \rangle, \langle ii, 1, \langle q \rangle, \langle ii, 1, \langle q \rangle \rangle$
 $= \langle iq, 1, \langle q \rangle, \langle ii, 1, \langle q \rangle$

Some important sets

Let VARIABLE =
$$2a \in IN \mid a = \nabla$$
 for some variable v ?
Let TERM = $2a \in IN \mid a = \nabla$ for some 1_{NT} -term 2 ?
Let FORMULA = $2a \in IN \mid a = \nabla$ " formula φ ?

pf for VARIABLE

consider the formula

$$V_1(x) := x = 2$$
 for some even $y > 0$
 $= \exists y ((\exists z)(y = z \cdot z) \land y > 0 \land x = E(z, sy))$

Coding Deductions

Regarding D...

$$\Gamma D = 5^{\Gamma \phi_1} \cdot 7^{\Gamma \phi_2} \cdots P_{k+2}^{\Gamma \phi_k}$$

* note that Gödel numbers of tems and
formulas are all even
* numbers whose smallest prime factor is
3 are garbage
* so, if the smallest prime factor is 5, then
the number represents a sequence

CHAPTER 6

THEOREMS

INCOMPLETENESS

Gödel'S 1^{St} Incompleteness The If A is any consistent and recursive set of J_{NT} -formulas, then there is a sentence Θ s.t. $N \models \Theta$ but $A \not\models \Theta$.

A″

Def Axion OFA =
$$\frac{2}{\sqrt{2}} \sqrt{4} \in A_{3}^{2} \in IN$$

 $T_{HMA} = \frac{2}{\sqrt{2}} \sqrt{4} \in A_{3}^{2} \in IN$
Def A is recursive if Axion OFA is representable.

Lemma 6.35 If A is recursive, then THMA is definable
by a
$$\Sigma$$
-formula which we call thm_A(V₁). That is,
 $N \in THM_A$ iff $\mathbb{N} \models thm_A(\pi)$

The proobat 6.3.5 makes use at our work in previous chapter, together with the following Lemma.

Lemma C.3.3 If AGIN is representable, Hen it has a Z-definition.

Let $(\psi(v_i))$ be any J_{wq} -formula (with only v_i free). Then there is a sentence Θ s.t.

$$N \vdash (\Theta \leftrightarrow \psi(\overline{G}))$$

★ This, ⊖ says" \$\$ is true about me".
Applying this when \$\$ is ¬thm_A(V_i), we have
N + (⊖ ←) ¬tm_A(¬o¬))
so here, ⊖ says " Iam not a theorem deducible from A"

Theorem 6.3.6. Gödel's First Incompleteness Theorem
If A is any consistent and recursive set of
Jur-formulas, then there is a sentence
$$\Theta$$
 s.t.
 $IN \models \Theta$ but $A \not\models \Theta$.

We may assume $A \models N$ (o/w we are done).

consider
$$T_{HM_{A}} = \{ [\phi^{\gamma} | A + \phi_{J_{A}}^{\gamma}, B_{Y} | G.3.5 \}$$

Here exists a $\sum \text{ formula } H_{M_{A}}(v_{i}) \text{ s.t.}$
 $N \in T_{HM_{A}}$ iff $|N \models H_{M_{A}}(\overline{n})$.

Applying the self-Ref. Lemma to - thmA (VI), there exists O s.t.

$$N \vdash (\Theta \rightleftharpoons \neg + hm_{A} (\overline{G})).$$

By Soundness, NF(0 ~> ~+hmA("0");

50

$$IN \models \Theta \quad iff \quad |N \not\models + hm_{A} (\overline{61}) \quad j \quad +hm_{A} \quad delines \\ \vdotsff \quad \nabla \not\notin T_{HM_{A}} \quad jfi \quad iff \quad 22i$$

If $N \models \Theta$ then $A \not\models \Theta$ and we are done. Thus towards a contradiction, assure $N \not\models \Theta$ and $A \vdash \Theta$.

Then
$$IN \models thm_{A}(\overline{rot})$$
. Remember, $thm_{A}(\overline{rot})$
is a Z-sententence, so by Prop 5.3.13
 $N \vdash thm_{A}(\overline{rot})!!$ Then, by choice of Θ ,
 $N \vdash \tau \Theta$, and as $A \vdash N$, $A \vdash \tau \Theta$. Thus
 $A \vdash \Theta \land \tau \Theta$, which contradicts the fact
that Aisconsistent.