MATH 161—WRITING ASSIGNMENT 04

Due: Sunday September 30—5:00 PM

Getting Started

- 1. Get the template for this assignment. Here's how to do it:
 - Go to https://v2.overleaf.com/ (formerly: https://www.sharelatex.com), and make sure you are logged in.
 - In a new window, go here:

https://v2.overleaf.com/read/rspmnrnrvnsc

- Click on the menu icon in the upper-left and select "Copy Project"
- When ask for a name, choose something like "Math 161 WA 04" and click "Copy"
- When this completes you will be back in your own workspace (instead of mine).
- After solving the problem(s), type them up using the template.
- Email me your final draft.
- 2. Let me know if you have any questions!
- 1. Let $\mathcal{L} = \{1, +, <\}$ where 1 is a constant, + is a binary function symbol, and < is a binary relation symbol. Define

$$\sigma :\equiv (\forall x)(\exists y)[(x < y) \to (x + 1 \neq y)].$$

Prove that there exist \mathcal{L} -structures \mathcal{M} and \mathcal{N} such that $\mathcal{M} \vDash \sigma$ and $\mathcal{N} \nvDash \sigma$.

Note: this is essentially Problem 1.7.1 #4. Your proof should be a careful construction of the two structures \mathcal{M} and \mathcal{N} together with proofs that \mathcal{M} models σ while \mathcal{N} does not. Remember, proving $\mathcal{N} \nvDash \sigma$ is the same as proving $\mathcal{N} \vDash (\neg \sigma)$.

You will see in the template that I got you started, but please feel free to write it up differently.