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1. Abstract groups

“Abstraction is real, probably more real than nature.”
- Josef Albers

1.1. The de�nition.

Definition 1.1. Let G be a set with a binary operation ∗. The structure G = (G, ∗) is called
a group if the following axioms hold:

(1) for all x , y , z ∈ G, we have (x ∗ y) ∗ z = x ∗ (y ∗ z),
(2) there exists an element e ∈ G such that for all x ∈ G, x ∗ e = x = e ∗ x, and
(3) for all x ∈ G, there exists a w such that x ∗ w = e = w ∗ x.

We often write x y in place of x ∗ y.

Theorem 1.2. Let G be a group. If e1, e2 ∈ G and for all x ∈ G, xe1 = x = e1x and xe2 = x = e2x,
then e1 = e2. In other words, G has a unique “identity” element.

Notation 1.3. The previous theorem states that every group has a unique element e sat-

isfying axiom (2) from De�nition 1.1. This element will be called the identity or trivial
element of the group. For groups whose binary operation is denote by ∗ or ·, the default

symbol for the identity (in these notes)will be 1. However, if the binary operation is denote

by +, the default symbol for the identity will be 0.

Theorem 1.4. Let G be a group, and let x ∈ G. If w1, w2 ∈ G with xw1 = 1 = w1x and
xw2 = 1 = w2x, then w1 = w2. In other words, every element of G has a unique “inverse.”

Notation 1.5. Theorem 1.4 states that for every element x of a group there is a unique
element w satisfying axiom (3) from De�nition 1.1 This element will be called the inverse
of x. For groups whose binary operation is denote by ∗ or ·, the default notation for the

inverse of x will be x−1; however, if the binary operation is denote by +, the inverse of x
will be denoted by −x.

Problem 1.6. Give examples of groups with the following properties by explicitly de�ning
the binary operation and noting the identity and inverses:

(1) a group with 4 elements,

(2) a groupwith 4 elements for which multiplication is truly di�erent than the previous

example, and

(3) an in�nite group.
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1.2. Basic arithmetic.

Notation 1.7. Let G be a group. If g , h ∈ G, then we call gh the product of g and h. Also,

for n ∈ N, gn
denotes the product of g with itself n-times, and g−n

denotes

(
g−1

)n
.

Theorem 1.8. Let G be a group. If g ∈ G and m , n ∈ Z, then
(1) 1n

= 1,
(2) g−n

=

(
gn)−1,

(3) gm gn
= gm+n , and

(4)
(
gm)n

= gmn .

Theorem 1.9. Let G be a group. If g , h ∈ G, then (gh)−1 = h−1g−1.

1.3. Orders of elements.

Definition 1.10. Let G be a group, and let g ∈ G. If gn
= 1 for some positive n ∈ N, then

we de�ne the order of g, denoted |g |, to be the smallest such n. Otherwise, we say that g
has in�nite order and write |g | = ∞. The order of G is de�ned to be the cardinality of G,

denoted |G |.

Fact 1.11 (Division Algorithm). Let n be an integer and m a positive integer. There are

unique integers q (the quotient) and r (the remainder) for which n = qm+r and 0 ≤ r < m.

Theorem 1.12. Let G be a group and n ∈ Z. If g ∈ G, then gn
= 1 if and only if |g | divides n.

Definition 1.13. Let G be a group. If g , h ∈ G, then we say that g and h commute if gh =

h g. More generally, g1, . . . , gr ∈ G are said to commute if gi g j = g j gi for all 1 ≤ i , j ≤ r.

Theorem 1.14. If g1, . . . , gr are commuting elements of a group, then |g1 · · · gr | must divide
lcm(|g1 |, . . . , |gr |).

Problem 1.15. Determine if the conclusion of the previous theorem can be improved to

read “. . . then |g1 · · · gr | = lcm(|g1 |, . . . , |gr |).”

Definition 1.16. We call a group G abelian (or commutative) if gh = h g for all g , h ∈ G.

Theorem 1.17. If every nontrivial element of a group has order 2, then the group is abelian.

Problem 1.18. Doyou think that there is something special about the number 2 thatmakes

the previous theorem work? If so, what might it be. If not, state a more general theorem

that you believe to be true.
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2. Examples

“A good stock of examples, as large as possible, is indispensable for a thorough understanding of any
concept, and when I want to learn something new, I make it my �rst job to build one.”

- Paul Halmos

2.1. Symmetric groups.

Definition 2.1. Let X be a set. A permutation of X is a bijection from X to X. The identity
permutation is the permutation idX : X → X de�ned by idX(x) = x for all x ∈ X.

Definition 2.2. Let X be any set. The symmetric group on X, denoted Sym(X), is the set

of all permutations of X. We denote by Sn the symmetric group on X = {1, 2, . . . , n}.

Theorem 2.3. If X is any set, then Sym(X) is a group with respect to function composition.

Notation 2.4 (cf. Notation 1.7). If a , b ∈ Sym(X), then ab denotes the (function) compo-

sition a ◦ b, i.e ab(x) = a(b(x)) for every x ∈ X.

Problem 2.5 (Diagrammatic representation of Sn).

(1) Which element of S4 does the following diagram seem to represent?

1

1

2

2

3

3

4

4

(2) What is the diagram for the inverse of the previous element.

(3) Formulate a rule in this notation for �nding the inverse of an element of S4.

(4) What is the diagram for the identity.

(5) Consider σ, τ ∈ S4 whose diagrams are given below. Determine the diagrams for

στ and τσ.

σ =

1

1

2

2

3

3

4

4

τ =

1

1

2

2

3

3

4

4

(6) Formulate a rule in this notation for �nding the composition of two elements.

Problem 2.6 (Two-line notion for Sn).

(1) Which element of S4 does the following two-line matrix seem to represent?(
1 2 3 4

1 3 4 2

)
(2) What is the two-line notation for the inverse of the previous element.

(3) Formulate a rule in this notation for �nding the inverse of an element of S4.

(4) What is the two-line notation for the identity.

(5) Determine the two-line notations for σ and τ from Problem 2.5, and do the same

for στ and τσ.
(6) Formulate a rule in this notation for �nding the composition of two elements.
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Problem 2.7 (Disjoint cycle notation for Sn).

(1) Which element of S4 does the following notation seem to represent?

(1) (3 4 2)

Note: in this notation, we will omit “cycles” of length 1 and simply write (3 4 2).

(2) Using disjoint cycle notation, how many di�erent ways are there to represent the

previous element?

(3) Write the inverse of the previous element in disjoint cycle notation.

(4) Formulate a rule in this notation for �nding the inverse of an element of S4.

(5) Determine disjoint cycle notation for σ and τ from Problem 2.5, and do the same

for στ and τσ.
(6) Formulate a rule in this notation for �nding the composition of two elements.

Fact 2.8. Every element of Sn can be written as a product of disjoint cycles.

Theorem 2.9. If n := |X | is �nite, then | Sym(X)| = (in terms of n) .

Definition 2.10. The list, in increasing order and with repetitions, of the lengths of the

cycles in the disjoint cycle notation for an element of a symmetric group is called the cycle
type of the element.

Remark 2.11. In Problem 2.7, σ has cycle type (1, 3), and as we tend to omit cycles of

length 1, we say that σ is a 3-cycle. The permutation τ has cycle type (2, 2). The element

(3 4 2)(1 7)(6 8) ∈ S10 is a (2, 2, 3)-cycle; its cycle type is (1, 1, 1, 2, 2, 3).

Problem 2.12.

(1) Find an element of S4 of order 2.

(2) How many elements of S4 have order 2? What are the possible cycle types of such

an element?

(3) Find an element of S4 of order 3.

(4) How many elements of S4 have order 3? What are the possible cycle types of such

an element?

(5) What are the possible cycle types for an element of S4?

Problem 2.13. Let σ ∈ Sn (with n ∈ N), and �x a prime p.
(1) Suppose that the order of σ is pk

for some natural number k. Describe the possible

cycle types for σ.
(2) Suppose that the cycle type of σ only involves powers of p, e.g. (1, 1, p , p2, p2, p4

).

Determine the order of σ.
(3) Suppose that the cycle type of σ is (2, 3). Determine the order of σ.

Theorem 2.14. The group Sn has (in terms of n) elements of order 2.

Theorem 2.15. If σ ∈ Sn has cycle type (m1, . . . ,mr), then |σ | = (in terms of m1, . . . ,mr) .

Theorem 2.16. If σ ∈ Sn , then |σ | divides |Sn |.
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2.2. Integers modulo n.

Definition 2.17. Let n be a positive integer. For each a ∈ Z de�ne the equivalence class
of a modulo n to be [a]n := {a + kn : k ∈ Z}. Further, de�ne Zn := {[a]n : a ∈ Z}.

Remark 2.18. In the previous de�nition, [a]n is a set, e.g. [2]7 = {. . . , −12, −5, 2, 9, 16, . . .}.
Also, note that [a]n = [b]n if and only if b ∈ [a]n . For example, [2]7 = [−12]7.

Fact 2.19. The following rules yield well-de�ned operations on Zn :

(1) [a]n +n [b]n := [a + b]n , and

(2) [a]n ·n [b]n := [ab]n .

When the context is clear, we simply use + and · for the operations instead of +n and ·n .

Theorem 2.20. For every positive integer n, (Zn , +) is a group.

Definition 2.21. If G is a group and g ∈ G, we say that g generates G if every h ∈ G is of

the form h = gk
for some k ∈ Z. If G is generated by one of its elements, G is said to be

cyclic.

Theorem 2.22. For every positive integer n, (Zn , +) is cyclic.

Problem 2.23. Make and provide evidence for (or prove) a conjecture as towhich elements

of Zn can generate Zn . [Hint: experiment! Try Z5, Z6, Z12, . . . ]

Theorem 2.24. The group (Z, +) is cyclic.

Problem 2.25. Find all elements of (Z, +) that generate it.

Theorem 2.26. Every cyclic group is abelian.

2.3. Linear groups.

Definition 2.27. Let F be a �eld, and let Mn(F) be the collection of n × n matrices with

entries from F.
(1) The general linear group is GLn(F) := {A ∈ Mn(F) : detA , 0}.

(2) The special linear group is SLn(F) := {A ∈ Mn(F) : detA = 1}.

Theorem 2.28. If F is a �eld, then GLn(F) and SLn(F) are both groups with respect to matrix
multiplication.

Theorem 2.29. If F is a �eld and n ≥ 2, then GLn(F) is nonabelian.

Theorem 2.30. The group SL2(R) has exactly one element of order 2.
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2.4. Automorphism groups of graphs.

Definition 2.31. A pair G = (V, E), where V is a set and E ⊆ V × V , is called a directed
graph (or digraph). The elements of V are called vertices, and the elements of E are called

directed edges.

Remark 2.32. Digraphs are usually represented by pictures. For example, consider the

following picture depicting the digraph (which we will call C4) de�ned by C4 = (V, E)
where V := {1, 2, 3, 4} and E := {(1, 2), (2, 3), (3, 4), (4, 1)}.

1

2 3

4

Definition 2.33. An automorphism of a digraph G = (V, E) is de�ned to be a permu-

tation σ ∈ Sym(V) such that (x , y) ∈ E if and only if (σ(x), σ(y)) ∈ E. The set of all

automorphisms of G is denoted Aut(G).

Theorem 2.34. If G is a digraph, then Aut(G) is a group.

Problem 2.35. Consider the digraph C4 de�ned in Remark 2.32.

(1) Write down all elements of Aut(C4) in disjoint cycle notation.

(2) Describe the various elements of Aut(C4) geometrically, e.g. re�ection, rotation, . . .

(3) True or False (and explain): is Aut(C4) cyclic?

(4) True or False (and explain): is Aut(C4) is abelian?

Problem 2.36. Repeat the previous problem forD4 = (V, E) where V := {1, 2, 3, 4} and E :=

{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 1), (1, 4)}. Whenever we have “both directions” of

an edge, we draw it with no arrows (instead of two). Here is the picture for D4.

1

2 3

4

Remark 2.37. If E is symmetric (as Problem 2.36), then G is called a graph, and we speak

of edges instead of directed edges.

Definition 2.38. Generalizing the previous problems, we get the graphsDn and Cn below.

43

2

1 n

Cn

43

2

1 n

Dn

(1) We denote Aut(Cn) by Cn .

(2) We denote Aut(Dn) by Dn (or often D2n); Dn is the dihedral group of order 2n.

Problem 2.39. Repeat Problem 2.35 for the digraph G = (V, E) with V := {1, 2, 3, 4} and
E := {(1, 2), (2, 1), (2, 3), (3, 4), (4, 3), (1, 4)}.

6



3. Subgroups, cosets, quotients, and morphisms

“Divide each di�culty into as many parts as is feasible and necessary to resolve it.”
- René Descartes

3.1. Subgroups.

Definition 3.1. A subset H of a group G is called a subgroup of G if for all h1, h2 ∈ H
(1) h1h2 ∈ H,

(2) h−1
1
∈ H, and

(3) 1G ∈ H.

We write H ≤ G to mean that H is a subgroup of G. A subgroup of G is proper, denoted
H < G, if it is not equal to G. A subgroup of G is nontrivial if it has more than 1 element.

Remark 3.2. We have seen several examples of subgroups already. For example, SLn(F) <
GLn(F), and C4 < D4 < S4.

Problem 3.3. Find all subgroups of S3. Illustrate how they are contained in each other.

Problem 3.4. Find all subgroups of Z12. Illustrate how they are contained in each other.

Problem 3.5. Find examples of each of the following in S4:

(1) two di�erent proper nontrivial cyclic subgroups,

(2) a proper noncyclic abelian subgroup, and

(3) two di�erent proper nonabelian subgroups.

Theorem 3.6. Let G be a group, and let g ∈ G. The set {gk |k ∈ Z} is a subgroup of G consisting
of exactly |g | elements (interpreted in the obvious way when |g | = ∞).

Definition 3.7. Let G be a group, and let g ∈ G. The set 〈g〉 := {gk |k ∈ Z} is called the

(cyclic) subgroup generated by g.

Remark 3.8. RevisitingDe�nition 2.21, we see that a group G is cyclic if and only if G = 〈g〉
for some g ∈ G.

Theorem 3.9. Every subgroup of a cyclic group is cyclic.

Theorem 3.10. Let G be a group. Prove that the intersection of any collection of subgroups of G
is also subgroup.

Definition 3.11. Let G be a group, and let S ⊆ G. The subgroup generated by S, denoted
〈S〉, is the intersection of all subgroups of G that contain S.

Remark 3.12. Note that every subgroup of G that contains S must also contain 〈S〉, so 〈S〉
is the smallest subgroup of G containing S. Also, when S consists of a single element, we

now have two de�nitions for 〈S〉, see De�nition 2.21, but they do agree.
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Problem 3.13. Show that D4 is generated by two elements.

Definition 3.14. Let G be a group. De�ne the center of G, denoted Z(G), to be the set

Z(G) := {h ∈ G |hg=gh for every g ∈ G}, and for each g ∈ G, de�ne the centralizer of g in

G to be CG(g) := {h ∈ G |h g = gh}.

Theorem 3.15. Let G be a group, and let g ∈ G. Then CG(g) and Z(G) are subgroups of G, and
CG(g) contains both 〈g〉 and Z(G).

Problem 3.16. Let I be the n × n identity matrix. De�ne S to be the subset of GLn(F)
consisting of the diagonal matrices where every entry on the main diagonal is the same

(and nonzero), i.e. S := {A ∈ GLn(F)|A = cI for some c ∈ F}. Show that S is subgroup and

that S ≤ Z(GLn(F)). Is there any chance that S = Z(GLn(F))?

Definition 3.17. The direct product of groups (G, ∗G) and (H, ∗H) is (G × H, ∗) where

G × H := {(g , h)|g ∈ G and h ∈ H} and (g1, h1) ∗ (g2, h2) := (g1 ∗G g2, h1 ∗H h2).

Theorem 3.18. If G and H are groups, then G × H is a group.

Problem 3.19. If G and H are groups, show that {(g , 1H)|g ∈ G} and {(1G , h)|h ∈ H} are
subgroups of G × H.

3.2. Cosets and normal subgroups.

Definition 3.20. Let G be a group and H a subgroup. For every g ∈ G, the set gH :=

{gh |h ∈ H} is called a left coset of H in G, and H g := {h g |h ∈ H} is called a right coset
of H in G. The collection of all left cosets of H in G will be denoted G/H; where as, H\G
denotes the collection of all right cosets of H in G.

Problem 3.21. Consider the subgroups H := 〈(12)〉 and N := 〈(123)〉 of S3.

(1) Determine S3/H and H\S3. Is S3/H = H\S3? Is |S3/H | = |H\S3 |?

(2) Determine S3/N and N\S3. Is S3/N = N\S3? Is |S3/N | = |N\S3 |?

Definition 3.22. A subgroup N of a group G is said to be normal if gN = N g for all g ∈ G.

Theorem 3.23. A subgroup N of a group G is normal if and only if gn g−1 ∈ N for all n ∈ N
and all g ∈ G.

Theorem 3.24. Every subgroup of an abelian group is normal.

Problem 3.25. If n ≥ 1, then nZ := {nm |m ∈ Z} is a subgroup of Z. (You don’t need to prove

this.) Describe the left cosets (which are the same as the right cosets) of nZ in Z.

Theorem 3.26. Let G be a group, H a subgroup, and g , g1, g2 ∈ G. Then
(1) gH = (gh)H for every h ∈ H, and
(2) g1H = g2H if and only if g−1

2
g1 ∈ H.
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Definition 3.27. A partition of a set X is a collection P of nonempty subsets of X such

that every element of X is in exactly one element of P.

Remark 3.28. If X = {a , b , c , d , e , f }, then
{
{a , c}, {e}, {b , d , f }

}
is a partition of X, but{

{a , c}, {e}, {b , f }
}
and

{
{a , c , d}, {e}, {b , d , f }

}
are not. A partition {A1,A2,A3,A4,A5} of

a set X can be visualized as follows.

A1

A2

A3

A4

A5

X

Theorem 3.29. If H is a subgroup of G, then the set of left cosets G/H forms a partition of G.

Remark 3.30. It is also true that the set of right cosets H\G forms a partition of G, though

quite possibly a di�erent one than G/H.

Fact 3.31. By de�nition, two sets A and B have the same cardinality (“size”), if there is a

one-to-one and onto function, i.e. a bijection, from A to B.

Theorem 3.32 (Lagrange’s Theorem). Let G be a group. If H ≤ G and A is any left or right
coset of H, then |A| = |H |. Consequently, |G | = |G/H | · |H | when G is �nite.

Remark 3.33. Lagrange’s Theorem tells us that the partition of a group G determined by

the left cosets of a subgroup H looks as follows.

H

g1H

g2H

...

G

Additionally, it should be rather clear that |G | = |H\G | · |H | and |G/H | = |H\G |, even
though it is often the case that G/H , H\G.

Theorem 3.34. The order of each element of a �nite group divides the order of the group.

Theorem 3.35. Every group of prime order is cyclic.

Definition 3.36. Let H a subgroup of a group G. De�ne the index of H in G, denoted

|G : H |, to be |G : H | := |G/H | = |H\G |.

Theorem 3.37. Every subgroup of index 2 in a group must be normal.
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3.3. Quotient groups.

Theorem 3.38. Let N be a normal subgroup of G. If g1, g2, a1, a2 ∈ G are such that g1N = a1N
and g2N = a2N , then

(1) (g1g2)N = (a1a2)N , and
(2) g−1

1
N = a−1

1
N .

Remark 3.39. The previous theorem is saying that for all a1 ∈ g1N and all a2 ∈ g2N the

product a1a2 always lies in the coset (g1g2)N (see the picture below) and the inverse a−1
1

always lies in the coset g−1
1

N . Thus, when N is normal, this allows us to give the coset

space G/N the structure of a group.

N

g1N

g2N

(g1g2)N

g
1

g
2

a
1

a
2

g
1

g
2 a

1
a
2

...

G

Definition 3.40 (Quotient groups). Let N be a normal subgroup of G. Then the coset

space G/N has the structure of a group where

(1) (aN) · (bN) = (ab)N ,

(2) (aN)
−1

= (a−1)N , and

(3) N = 1N is the identity.

Remark 3.41. If G is an group with normal subgroup N , then many properties of G trans-

fer to the group G/N . For example, if G is abelian, then G/N is also abelian. Additionally,

properties for N and G/N can sometimes be combined to deduce properties of G, but this

is usually a bit more complicated.

Theorem 3.42. If G is a cyclic group and N is a subgroup, then both N and G/N are cyclic.

Problem 3.43. Find a group G with a normal subgroup N such that both N and G/N are

cyclic but G is not even abelian.

Definition 3.44. A subgroup H of a group G is called central if H ≤ Z(G). Note that

central subgroups are necessarily normal.

Theorem 3.45. If N is a central subgroup of G and G/N is cyclic, then G is abelian.

Definition 3.46. Let p be a prime. A group is a p-group if the order of every element is a

power of p; that is, for every element g, there is some k ∈ N such that |g | = pk
.
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Remark 3.47. Note that D4 is a 2-group, and by Lagrange’s Theorem, every group of

prime-power order must be a p-group. Can you think of an in�nite p-group?

Theorem 3.48. Let p be a prime, and let N be a normal subgroup of G. If N and G/N are p-groups,
then G is also a p-group.

Remark 3.49. Let G be a �nite group. We know, by Theorem 3.34, that the order of every

element of G divides |G |. Now, suppose that some prime p divides |G |; does this imply

that G has an element of order p? The next few theorems start to explore this question.

Theorem 3.50. Let G be a �nite cyclic group. If p is a prime dividing |G |, then G has an element
of order p.

Definition 3.51. Let n ∈ N. A group G is said to be n-divisible if for every g ∈ G there is

some x ∈ G such that g = xn
, i.e. the function G → G : x 7→ xn

is surjective. In additive

notation, the condition g = xn
becomes g = nx, justifying the name n-divisible.

Theorem 3.52. Let G be a �nite abelian group, and let p be a prime. If G has no elements of order
p, then G is p-divisible.

Theorem 3.53. Let G be a �nite group and p be a prime. If N is a central subgroup of G and G/N
has an element of order p, then G has an element of order p. [Hint: either N has an element of

order p or it does not. In the latter case, try to use the previous theorem.]

Theorem 3.54. Let G be a �nite abelian group. If p is a prime dividing |G |, then G has an element
of order p. [Hint: this theorem is hard. Solving it will bringmuch honor and glory! Towards

a contradiction, assume that the theorem is false. Consider using the following technique

of exploring a “minimal counterexample.” Let A be the set of all counterexamples to the

theorem. By the Well-ordering Principle, A contains a group G for which |G | is minimal,

i.e. G is a counterexample to the theorem, but every group of smaller order than G satis�es

the theorem. Now, to �nd a contradiction, show that G must have a proper nontrivial

subgroup N , and then study N and G/N .]

Remark 3.55. The previous three theorems raise many questions. Is it true that every �-

nite group without elements of order p is p-divisible? What about in�nite groups? Is it

necessary that N be central in the statement of Theorem 3.53? If p is a prime dividing the

order of an arbitrary �nite group, must the group have an element of order p?

Problem 3.56. Generalize Theorem 3.54 in some way.

3.4. Morphisms.

Definition 3.57. Let G and H be groups. A function ϕ : G → H is called a homomorphism
if ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G. A bijective homomorphism from G to H is called

an isomorphism, and in this case, G and H are said to be isomorphic, denoted G � H. An

isomorphism from G to G is called an automorphism of G.
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Remark 3.58. In the equation ϕ(g1g2) = ϕ(g1)ϕ(g2), the product g1g2 is computed accord-

ing to the de�nition of multiplication in G; where as, the product ϕ(g1)ϕ(g2) is computed

according to the de�nition of multiplication in H .

Theorem 3.59. If ϕ : G → H is a homomorphism of groups, then for all g ∈ G, ϕ(g−1) = ϕ(g)−1
and ϕ(1G) = 1H .

Theorem 3.60. A group G is abelian if and only if the inversion map G → G : x 7→ x−1 is an
automorphism.

Remark 3.61. Recall that any bijection f from a set X to a set Y has an inverse de�ned by

f −1 ◦ f = idX and f ◦ f −1 = idY .

Theorem 3.62. The inverse of an isomorphism between two groups is also an isomorphism.

Remark 3.63. Ahomomorphism from G to H translates the group operations of G to those

of H, and this transfers various properties of G to H. This is especially true when G � H
as, in this case, G and H are for all intents and purposes the same group, except that the

elements have di�erent names.

Theorem 3.64. Let ϕ : G → H be a surjective homomorphism of groups.
(1) If G is cyclic, then H is cyclic.
(2) If G is abelian, then H is abelian.

Remark 3.65. If ϕ : G → H is an isomorphism of groups, the previous two theorems can

be combined to see that G is cyclic if and only if H is cyclic and that G is abelian if and

only if H is abelian.

Theorem 3.66. Let ϕ : G → H be a homomorphism of groups. If g ∈ G has �nite order, then
|ϕ(g)| divides |g |, and if, additionally, ϕ is injective, then |ϕ(g)| = |g |.

Theorem 3.67. Every two in�nite cyclic groups are isomorphic, and two �nite cyclic groups are
isomorphic if and only if they have the same cardinality.

Problem 3.68. Show that Z contains (many) proper subgroups that are isomorphic Z.

Definition 3.69. The quaternion group is the group Q8 :=

{
{±1,±i ,± j,±k}, ·,−1 , 1

}
where

• (−1)(−1) = 1,

• g(−1) = (−1)g = −g for all g ∈ Q8,

• i2 = j2 = k2 = −1, and
• i j = k.

Note that these axioms imply that 1 is the identity and that g−1 = −g for all g ∈ Q8 − {±1}.

Problem 3.70. Show that Q8 is a nonabelian group of order 8 that is not isomorphic to D4.

12



Notation 3.71. There are two groups attached to every �eld F: the elements of F under

addition, denoted F+
, and the nonzero elements of F under multiplication, denoted F× .

Problem 3.72. Show that R+ � R× . However, if H is the subgroup of R× consisting of the

positive real numbers, show that R+ � H.

Problem 3.73. Let F be any �eld. Find two subgroups of GL2(F) isomorphic to F+
and F× .

[Hint: you can restrict your attention to upper triangular matrices.]

Definition 3.74. Let G and H be groups, and let ϕ : G → H be a homomorphism. De�ne

the kernel of ϕ to be kerϕ := {g ∈ G |ϕ(g) = 1}. For any subset A ⊆ G, de�ne the image of
A to be ϕ(A) := {h ∈ H |h = ϕ(a) for some a ∈ A}.

Theorem 3.75. If ϕ : G → H is a homomorphism of groups, then the kernel of ϕ is a normal
subgroup of G, and the image of any subgroup of G is a subgroup of H.

Remark 3.76. The previous theorem states that kernels of homomorphisms are normal

subgroups, but the converse is also true: every normal subgroup is the kernel of some

homomorphism. Indeed, if N E G, then the map ϕ : G → G/N : g 7→ gN is a (surjective)

homomorphism with kernel equal to N .

Theorem 3.77. A homomorphism of groups is injective if and only if the kernel is trivial.

Theorem 3.78 (First Isomorphism Theorem). If ϕ : G → H is a surjective homomorphism of
groups, then G/kerϕ � H. [Hint: Use ϕ to de�ne a related function from G/kerϕ to H.]

Remark 3.79. If ϕ : G → H is a homomorphism of groups, then ϕ : G → ϕ(G) is a surjec-
tive homomorphism, so G/kerϕ � ϕ(G). In words, “G modulo the kernel is isomorphic

to the image.” Setting K := kerϕ, the picture is roughly as follows.

...

ϕ
K

g1K

g2K

...
G

1

ϕ(g
1
)

ϕ(g
2
)

...

H

ϕ(G)

Problem 3.80. Let F be any �eld. Show that SLn(F) is normal in GLn(F) by showing that

SLn(F) is the kernel of a homomorphism from GLn(F) to another group. Use this homo-

morphism to describe the quotient group GLn(F)/ SLn(F).
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4. Group actions

“Groups, as men, will be known by their actions.”
- Guillermo Moreno

4.1. The de�nition.

Definition 4.1. An action of a group G on a set X is a function from α : G × X → X such

that the following hold for all g , h ∈ G and all x ∈ X; we write g · x in place of α(g , x).
(1) g · (h · x) = (gh) · x, and
(2) 1 · x = x.

Problem 4.2. Recall that D6 is the automorphism group of the regular hexagonD6. Let V
be the set of vertices of D6, let E the set of edges of D6, and let X = {a , b , c} be the set of

(three) diagonal edges shown below.

a
b

c

1

2

3 4

5

6

(1) Show that D6 acts on V via the rule σ · v = σ(v) for all σ ∈ D6 and all v ∈ V .

(2) Show that D6 acts on E via the rule σ · (v1, v2) = (σ(v1), σ(v1)) for all σ ∈ D6 and all

(v1, v2) ∈ E.
(3) Show that D6 acts on X via the rule σ · (v1, v2) = (σ(v1), σ(v1)) for all σ ∈ D6 and all

(v1, v2) ∈ X.

Definition 4.3. Let G act on X.

(1) The action is transitive if for every x , y ∈ X there is a g ∈ G such that g · x = y.
(2) For g ∈ G and x ∈ X, we say that g �xes x if g · x = x.
(3) For x ∈ X, the stabilizer of x, denoted Gx , is set of all g ∈ G that �x x.

Problem 4.4. Let G = D6, and consider the action of G on X = {a , b , c} de�ned by the rule

σ · (v1, v2) = (σ(v1), σ(v1)).

a
b

c

1

2

3 4

5

6

(1) Is the action transitive?

(2) Determine the Ga .

(3) Find a numerical relationship between |G |, |X |, and |Ga |.

(4) Determine Ga ,b where Ga ,b is the set of elements of G that �x both a and b.
(5) Are there elements of G that �x every element of X? If so, �nd them all.

Theorem 4.5. An action of a group G on X is transitive if there exists some x ∈ X such that for
all y ∈ X there is a g ∈ G for which g · x = y.
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Definition 4.6. Let G act on X.

(1) The kernel of the action is the subset of G that �xes every x ∈ X.

(2) The action is said to be faithful if the kernel is trivial.

Theorem 4.7. If G acts on X and x ∈ X, then Gx is a subgroup of G, and the kernel of the action
is a normal subgroup.

Theorem 4.8. Let G act on X. For every g ∈ G, de�ne σg : X → X by σg(x) = g · x. Then σg is
a bijection, i.e. σg ∈ Sym(X). [Hint: make use of the fact that g has an inverse.]

Theorem 4.9. Let G act on X, and de�ne σ : G → Sym(X) by σ(g) = σg where σg is de�ned as
in the previous theorem. Then σ is a homomorphism. [Hint: in order to show that σgh = σg ◦σh ,

show that σgh(x) = σg(σh(x)) for all x ∈ X.]

Definition 4.10. In the previous theorem, the function σ : G → Sym(X) is called the

associated permutation representation of the action of G on X.

Remark 4.11. Observe that the kernel of an action corresponds with the kernel of the

associated permutation representation, so an action is faithful if and only if the associated

permutation representation is injective.

Problem 4.12. As in Problem 4.4, consider the action of D6 the 3 diagonals of D6.

(1) What is the kernel of the action? Is the action faithful?

(2) What is the image of the associated permutation representation?

Note: the kernel is a subgroup of D6; the image of the representation is a subgroup of Sym(a , b , c).

Problem 4.13. Let G = C6. As with D6, we have an action of G on X = {a , b , c} de�ned by

σ · (v1, v2) = (σ(v1), σ(v1)).

a
b

c

1

2

3 4

5

6

(1) Is the action transitive?

(2) Determine the Ga .

(3) Find a numerical relationship between |G |, |X |, and |Ga |.

(4) What is the kernel of the action. Is the action faithful?

(5) What is the image of the associated permutation representation?

4.2. Action by left multiplication.

Theorem 4.14 (Action by left multiplication). Let G be a group, and let H be a subgroup. Then
the rule g · aH = (ga)H de�nes an action of G on the coset space G/H.

Problem 4.15. Let G be a group, and let H be a subgroup. Consider the action of G on

G/H by left multiplication (as in the previous theorem).

15



(1) Is the action transitive?

(2) Show that the stabilizer of the coset aH is aHa−1.
(3) Show that the kernel of the action is

⋂
a∈G aHa−1. (Note that, in particular, this

shows that the kernel is a normal subgroup of G contained in H.)

(4) Give an example of a group G and a proper nontrivial subgroup H for which this

action is not faithful.

Definition 4.16. A group is simple if it has no proper nontrivial normal subgroups.

Remark 4.17. Whenever a group G has a proper nontrivial normal subgroup N , we can

break G into two “simpler” pieces: N and G/N . The simple groups are the groups that can

not be broken down this way; they may be thought of as the building blocks of all groups.

Theorem 4.18. If G is an in�nite group with a proper subgroup H of �nite index, then G is
not simple. [Hint: argue by contradiction, and consider the action of G on G/H by left

multiplication. This gives rise to the associated representation σ : G → Sym(G/H). Now,

if G is simple, what do you know about the kernel of the action? What does the First

Isomorphism Theorem, i.e. Theorem 3.78 and Remark 3.79, tell you?]

Theorem 4.19. Let G be a �nite group with a proper subgroup H, and let n = |G : H |. If |G | does
not divide n!, then G is not simple. [Hint: same hint as the previous problem.]

4.3. Action by conjugation.

Notation 4.20. Let G be a group. For g ∈ G, the function γg : G → G de�ned by γg(h) =
gh g−1 is called conjugation by g.

Theorem 4.21. If G is a group and g ∈ G, then γg is an automorphism of G. In particular,
(1) if h ∈ G, then |h | = |gh g−1 |, and
(2) if H is a subgroup of G, then gH g−1 is a subgroup of G with H � gH g−1.

Theorem 4.22. Let σ, τ ∈ Sn . If the disjoint cycle decomposition of σ is(
a1 a2 · · · ak

1

) (
b1 b2 · · · bk2

)
· · · ,

then the disjoint cycle decomposition of τστ−1 is(
τ(a1) τ(a2) · · · τ(ak

1

)

) (
τ(b1) τ(b2) · · · τ(bk2)

)
· · · .

In particular, σ and τστ−1 have the same cycle type. [Hint: let ψ = τστ−1, and note that the

theorem simply states that for all x , y ∈ {1, . . . , n} if σ(x) = y, then ψ(τ(x)) = τ(y).]

Theorem 4.23 (Action by conjugation). Let G be a group. Then
(1) the rule g · a = ga g−1 de�nes an action of G on G, and
(2) the rule g · H = gH g−1 de�nes an action of G on the set of all subgroups of G.

Definition 4.24. Let H be a subgroup of a group G. The set NG(H) := {g ∈ G | gH g−1 = H}
is called the normalizer of H in G.

16



Remark 4.25. Note that we have some overlapping terminology. When G acts on itself by

conjugation (as in the �rst part of the previous theorem), the stabilizer of an element a
of G is CG(a). When G acts on its subgroups by conjugation (as in the second part of the

previous theorem), the stabilizer of a subgroup H is NG(H).

Theorem 4.26. If H is a subgroup of a group G, then H is a normal subgroup of NG(H).

Definition 4.27. If A and B are subsets of a group G, we de�ne AB := {ab |a ∈ A, b ∈ B}.

Theorem 4.28. If H is a subgroup of a group G and K is a subgroup of NG(H), then KH is a
subgroup of NG(H).

Definition 4.29. Let G be a group acting on a set X. If x ∈ X, then the subset of X de�ned

by Gx := {g · x |g ∈ G} is called the orbit of x under G.

Theorem 4.30. If G is a group acting on a set X, then the set of orbits forms a partition of X.

Definition 4.31. When G acts on itself (or on its subgroups) by conjugation, the orbits

are called conjugacy classes (or conjugacy classes of subgroups) and two elements in the

same conjugacy class are said to be conjugate.

Problem 4.32. Determine the conjugacy classes of S3. Determine the conjugacy classes of

subgroups of S3.

Theorem 4.33. Two elements of Sn are conjugate if and only if they have the same cycle type.

Theorem 4.34. If n ≥ 3, then Z(Sn) = {1}.

Problem 4.35. Determine the conjugacy classes of D4.

4.4. The Orbit-stabilizer Theorem.

Remark 4.36. Suppose that G acts on X. Observe that, for any orbit O, the action of G on

X restricts to an action of G on O, and this latter action is now transitive. In this way, many

questions about group actions can be reduced to questions about transitive group actions.

Theorem 4.37 (Orbit-stabilizer Theorem). Let G be a group acting on a set X. Then for every
x ∈ X, |Gx | = |G : Gx |. [Hint: construct a bijection from G/Gx to Gx.]

Notation 4.38. For a group G acting on a set X, we de�ne Fix(G) to be the set of all x ∈ X
such that x �xed by every element of G, i.e. Fix(G) is the set of �xed points of G. The

elements of Fix(G) represent the orbits of G of size 1.

Theorem 4.39. Let G be a �nite group acting on a �nite set X. Let O1, . . . , On be the orbits of G
not contained in Fix(G), if any, and let x1, . . . xn ∈ X be such that xi ∈ Oi . Then

|X | = | Fix(G)| +

n∑
i=1

|G : Gxi |.

[Hint: recall that the orbits of G partition X.]
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Theorem 4.40. Let P be a group of order pk for some prime p. If P acts on a �nite set X, then
| Fix(P)| ≡ |X | modulo p.

Theorem 4.41. If P is a group of order pk for some prime p, then Z(P) is nontrivial. [Hint: let P
act on itself by conjugation. What is Fix(P) with respect to this action?]

Theorem 4.42. If P is group of order p2 for some prime p, then P is abelian.

Problem 4.43 (TheClass Equation). Let G be a �nite group. LetC1, . . . , Cn be the conjugacy

classes of G not contained in Z(G), if any, and let x1, . . . xn ∈ G be such that xi ∈ Ci . Explain

how Theorem 4.39 can be used to quickly deduce that

|G | = |Z(G)| +

n∑
i=1

|G : CG(xi)|.

Theorem 4.44. Let G be a �nite group. If p is a prime dividing |G |, then p divides |CG(g)| for
some nontrivial g ∈ G. [Hint: class equation.]

Theorem 4.45 (Cauchy’s Theorem). Let G be a �nite group. If p is a prime dividing |G |, then
G has an element of order p. [Hint: consider a minimal counterexample, and �rst show that

it must have a nontrivial center.]

Theorem 4.46. Let p be a prime. If G is a �nite group, then G is a p-group (see De�nition 3.46)
if an only if |G | = pk for some k ∈ N.

Problem 4.47. We should always be asking if we can generalize things. Make at least two

conjectures related to generalizing (or not being able to generalize) Cauchy’s Theorem.

18



5. Sylow’s Theorem

“For a group theorist, Sylow’s Theorem is such a basic tool, and so fundamental, that it is used
almost without thinking, like breathing.”

- Geo� Robinson

5.1. The de�nition.

Definition 5.1. Let p be a prime. A subgroup P of G is called a Sylow p-subgroup if P is

a p-group and P is not properly contained in another p-subgroup of G, i.e. P is a maximal

p-subgroup of G. Let Sylp(G) be the set of Sylow p-subgroups of G.

Remark 5.2. If G is a �nite group of order pk m with p prime and p not dividing m, then

a Sylow p-subgroup of G has order at most pk
, by Theorem 4.46.

Problem 5.3. Find a Sylow 5-subgroup of S5.

Problem 5.4. Find a Sylow 2-subgroup of S4. [Hint: the maximum possible cardinality is 8.
Do you know of a group with 8 elements that acts on a set of size 4?]

5.2. Sylow’s Theorem.

Theorem 5.5. Let p be a prime. If P ∈ Sylp(G), then gP g−1 ∈ Sylp(G) for all g ∈ G, so G acts
on Sylp(G) by conjugation.

Theorem 5.6. Let p be a prime. If P is a p-subgroup of a group G and Q is a p-subgroup of NG(P),
then QP is a p-subgroup of NG(P). [Hint: �rst show that QP/P is a p-group.]

Theorem 5.7. Let p be a prime, and let P be a Sylow p-subgroup of a group G. If P is normal
in G, then P is the only Sylow p-subgroup of G, and consequently, P is always the unique Sylow
p-subgroup of NG(P).

Theorem 5.8 (Sylow’s Theorem - part 1). If G is a �nite group and p is a prime dividing |G |,
then any two Sylow p-subgroups of G are conjugate, and further, | Sylp(G)| ≡ 1 modulo p.
[Hint: let O be an orbit of G acting on Sylp(G) by conjugation. The goal is to show O =

Sylp(G) and |O | ≡ 1 mod p. Choose P ∈ O, and towards a contradiction, assume that Q ∈
Sylp(G) with Q < O. Now, the key is to consider how P and Q act on O (by conjugation).

(1) Show that the only subgroup in O that P �xes, i.e. normalizes, is P itself. Conclude

that |O | ≡ 1 modulo p.
(2) Show that Q �xes nothing in O. Conclude from this that |O | ≡ 0 modulo p.

The previous theorem and Theorem 4.40 are very relevant.]

Theorem 5.9 (Sylow’s Theorem - part 2). If G is a �nite group and |G | = mpk with p prime
and p not dividing m, then |P | = pk for every P ∈ Sylp(G).
[Hint: use part 1 of Sylow’s Theorem and the Orbit-Stabilizer Theorem to show |NG(P)| =
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m′pk
for some m′. Now, towards a contradiction, assume that |P | = p` with ` < k, and

consider the quotient group NG(P)/P. Show that NG(P)/P must have an element of order

p and use this �nd a contradiction.]

5.3. Applications of Sylow’s Theorem.

Remark 5.10. Since all Sylow p-subgroups of a �nite group are conjugate, a �nite group

has a normal Sylow p-subgroup if and only if it has a unique one. Thus, the condition

“| Sylp(G)| ≡ 1 modulo p” can be helpful in determining if a group has a normal Sylow

subgroup or not. And one should always remember that | Sylp(G)| = |G : NG(P)| by the

Orbit-Stabilizer Theorem, so in particular, | Sylp(G)| is always coprime to p.

Theorem 5.11. If G is a group of order mpk with p prime and m < p, then G has a normal Sylow
p-subgroup.

Theorem 5.12. If G is a group of order pqr where p, q, and r are prime with p < q < r, then
some Sylow subgroup of G is normal. [Hint: the following counting technique often works

well when the largest prime divisors of |G | only occur to the �rst power (make sure you

see when you use this). The rough idea is that if no Sylow subgroup of G is normal, then

G will have too many Sylow subgroups and, in turn, too many elements. Assume the

theorem is false. First count the number of Sylow r-subgroups, and use this to count the

number of elements of G of order r. Now estimate (it will be hard to precisely count) the

number of Sylow q-subgroups, and use this to estimate the number of elements of G of

order q. Finally, compare the sum of these with the order of G.]

The End
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