EXAM 2-REVIEW QUESTIONS

LINEAR ALGEBRA

Questions (answers are below)

Examples. For each of the following, either provide a specific example which satisfies the given description, or if no such example exists, briefly explain why not.
(1) (JR) A set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{3}\right\}$ which forms a basis for P_{3}.
(2) (AP) A linearly independent set of at least 5 vectors in \mathbb{R}^{4}.
(3) (BP) A nonsingular matrix $A \in M_{n \times n}$ with $\operatorname{nullity}(A) \neq 0$.
(4) (LL) A subspace, W, for the vector space \mathbb{R}^{4}
(5) (TP) An $m \times n$ matrix whose columns rank $>$ its row rank.

Note: rank wil NOT be covered on this exam.
(6) (LS) Let V be the set of all 2×2 matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a b c d=0$. Create two nonzero matrices B and C showing that V is not closed under addition.
(7) (VM) A matrix $A \in M_{m \times n}$ with nullity $A=\operatorname{rank} A$.
(8) (CB) A 3×3 upper triangular matrix whose columns and rows are both linearly independent.
(9) (HD) Two vectors in \mathbb{R}^{2} that are linearly dependent.
(10) (OH) A 3×3 matrix A where $\operatorname{det} A=-1$.
(11) (EB) A matrix A with linearly independent columns for which $\operatorname{det}(A)=0$.
(12) (XR) A linearly independent subset $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ of a vector space V with $\operatorname{dim} V<n$.
(13) (EF) Four vectors in \mathbb{R}^{3} that are linearly independent.
(14) (SS) A basis $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of a vector space V where $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent.
(15) (LB) A 2×2 matrix A where $\operatorname{det}\left(A^{-1}\right)=0$.
(16) (KS) A $n \times n$ matrix with row rank $>$ column rank.

Note: rank wil NOT be covered on this exam.
(17) (BW) A linearly independent set of vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{3}\right\}$ such that S spans R^{3}.
(18) (JH) A singular $n \times n$ matrix with its determinant not equal to zero.
(19) (LD) A basis $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for the vector space of 2×2 matrices with trace equal to zero.
(20) (MS) A nonsingular 3×3 matrix with a row of zeros.
(21) (AL) An $n \times n$ matrix A with $\operatorname{rank} A=n$ and $\operatorname{det} A=0$.

Note: rank wil NOT be covered on this exam.
(22) (EA) Vector spaces V and W where V is isomorphic to W but W is not isomorphic to V.

True or False.

(a) (JR) It is possible to find a finite set of vectors which spans P, the set of all polynomials.
(b) (AP) Let $A \in M_{n \times n}$ and $x \in \mathbb{R}^{n}$. If $\operatorname{det} A \neq 0$, then the system $A x=0$ has only the trivial solution.
(c) (BP) Let S form a basis for \mathbb{R}^{n}. Then S is linearly independent.
(d) (LL) $V=\{x \in \mathbb{R} \mid x>0\}$ with operations \oplus as addition and \odot as scalar multipliaction is a real vector space.
(e) (TP) The determinate of an invertible matrix can never equal zero.
(f) (LS) If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(g) (VM) If a set of n vectors S, in an n-dimentional vector space V, spans V, then S is linearly independent.
(h) (HD) If $\mathbf{u} \in V$ where V is a vector space, then $c \odot \mathbf{u}=\mathbf{0}$ means that $\mathbf{u}=\mathbf{0}$

[^0](i) (CB) Let V be a vector space and S be a subspace of V. Every set that spans S contains a basis for S.
(j) $(\mathrm{OH}) P_{2}$ is a subspace of P_{3}.
(k) (EB) If $\operatorname{det}(A)=0$, them A is the product of elementary matrices.
(l) (XR) If $A \in M_{m \times n}$ with $m<n$, then $A \vec{x}=\overrightarrow{0}$ has infinitely many solutions.
(m) (EF) If the rows or columns of a square matrix A are linearly independent, then A is invertible.
(n) (SS) If S_{1} and S_{2} are finite subsets of vector space V and S_{1} is a subset of S_{2}. Then if S_{1} is linearly dependent then so is S_{2}.
(o) (LB) A basis for P_{3} can be trimmed to form a basis for P_{4}.
(p) (KS) An $m \times n$ matrix with $m \neq n$ where the rows and columns of A are both linearly independent.
(q) (BW) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{3}, \mathbf{v}_{3}\right\}$ is a set of vectors in vector space V and S is linearly dependent, then span S is not a subspace of V.
(r) (LD) The set of all $n \times n$ skew symmetric matrices is not a subspace of $M_{n n}$.
(s) (JH) If a vector space V has dimension n, then any subset of size n that spans V must be linearly independent.
(t$)$ (MS) If linearly dependent vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ span the the vector space V, then the vectors form a basis for V.
(u) (AL) If W is a subspace of the vector space V, then every linear combination of vectors from V is also in W.
(v) (EA) Two finite-dimensional spaces are isomorphic if and only if their dimensions are equal

Answers

Examples - Answers.

(1) (JR) No such example exists because P_{n} has dimension $n+1$, by a proposition from class. Therefore, a basis for P_{3} must contain exactly 4 vectors.
(2) (AP) Impossible. By Theorem 4.10, a linearly independent set of vectors in a vector space V cannot have more elements than the basis for V.
(3) (BP) No such example exists because nullity $(A) \neq 0$ implies that $A \mathbf{x}=\mathbf{0}$ has more than only the trivial solution. That implies, by the Invertibility Theorem, that A is singular.
(4) (LL) W is the set of all vectors of the form $\left[\begin{array}{l}x \\ 0 \\ y \\ 0\end{array}\right]$, where $x, y \in \mathbb{R}$
(5) (TP) No such example exists, by theorem 4.18, row rank $=$ col rank.
(6) (LS) $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
(7)
(8) $(\mathrm{VM}) A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right](\operatorname{rank} A=\operatorname{nullity} A=2)$ (CB) $A=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right]$ Where $a_{11}, a_{22}, a_{33} \neq 0$.
(9) (HD) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$ because one is the multiple of the other.
(10) $(\mathrm{OH})\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.
(11) (EB) No such example exists, by theorem 4.5.
(12) (XR) There is no such example by Theorem 4.10
(13) (EF) No such example exists because \mathbb{R}^{n} has dimension n which means that there can be at most n vectors that are linearly independent.
(14) (SS) No such example exists by definition 4.10.
(15) (LB) Impossible. For a matrix to be invertible, $\operatorname{det}(A) \neq 0$.
(16) (KS) No such example exists by Theorem 4.18.
(17) (BW) One such example is $\mathbf{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
(18) (JH) No such example exists. By Theorem 3.8, if A is an $n \times n$ matrix, then A is nonsingular if and only if $\operatorname{det}(A) \neq 0$.
(19) $(\mathrm{LD}) \mathbf{v}_{1}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
(20) (MS) Not possible because by Theorem 3.4, if a matrix has a row of zeros then the $\operatorname{det} A=0$ and the matrix would be singular.
(21) (AL) Not possible. By Corollary 4.8 if A is an $n \times n$ matrix, then $\operatorname{rank} A=n$ if and only if $\operatorname{det}(A)$ $\neq 0$.
(22) (EA) Not possible, By Theorem 4.15, if V is isomorphic to W, then W is Isomorphic to V

True or False - Answers.

(a) (JR) False. P is infinite dimensional, so its basis must contain infinite vectors.
(b) (AP) True; by the invertibility theorem, if $\operatorname{det} A \neq 0$, then the homogeneous system $A x=0$ has only the trivial solution.
(c) (BP) True, by the definition of a basis.
(d) (LL) False, V is not closed under \odot
(e) (TP) True, only singular matrices have determinate $=0$.
(f) (LS) True. See Theorem 3.9 (page 153).
(g) (VM) True. According to Theorem $4.12 S$ has to be a basis for V and thus, by definition $4.10 S$ is linearly independent.
(h) (HD) False. The scalar c can be 0.
(i) (CB) True, see Theorem 4.9.
(j) (OH) True, Theorem 4.3.
(k) (EB) False, under the invertibility theorem.
(l) (XR) Yes, by theorem 4.19 the nullity of A must be greater than 0 when $m<n$, which means there exists at least one free variable.
(m) (EF) True. By Theorem 4.5, if the columns or rows of a square matrix are linearly independent, then $\operatorname{det} A \neq 0$. If $\operatorname{det} A \neq 0, A$ is invertible, by our invertibility theorem.
(n) (SS) True, by Theorem 4.6.
(o) (LB) False, a basis for P_{4} will need to have 5 vectors, while a basis for P_{3} has 4 vectors.
(p) (KS) False, by Thm 4.18 and proposition 1 of WA\# 11 which states that if vector space V has dimension n, then any subset of $m>n$ vectors must be linearly dependent.
(q) (BW) False. By Theorem 4.4, we know that span S is a subspace of V because dependence is not taken into account when determining what is a subspace.
(r) (LD) False. See \#18(c) in Homework \#8
(s) (JH) True. By definition 4.10 and 4.11, any subset of size n that spans V is a basis. So it is linearly independent.
(t) (MS) False, the vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ must be linearly independent to be a basis for vector space V.
(u) (AL) False because W is a subspace of V so vectors in V might not be contained in W, nor linear combinations of those vectors.
(v) (EA) True by Theorem 4.16

[^0]: Date: November 19, 2015.

