Week 11: Dimension and Isomorphisms

Homework #10

due Thursday, Nov. 5

 $\$4.6 \ #2(a)(c), \ 4(a)(c), 10, \ 11, \ 13, \ 20(b), \ 22, \ 30$

For #13, identify each polynomial $a + bt + ct^2 + d^3$ with the 4-vector $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ (or $\begin{bmatrix} a \\ c \\ b \\ a \end{bmatrix}$ - but be consistent), and then follow the same approach as for #11. Make sure that the answer you provide consists of polynomials though (and not 4-vectors).

When asked to "Generalize to M_{mn} " in exercise #30, make sure to describe a basis for M_{mn} and give the dimension of M_{mn} .

Writing Assignment #10

due Monday, Nov. 9

AP #1 Let $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in a vector space. If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent and $\mathbf{u} \notin \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, prove that $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

AP #2 Let $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in a vector space. If $\mathbf{u} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, prove that

 $\operatorname{span}\{\mathbf{u},\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}=\operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}.$

Hint: Let $S = \text{span}\{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ and $T = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$. To show S = T, you must show two things: $S \subseteq T$ and $T \subseteq S$. One of these is easy, and the other requires a little work.

AP #3 Let V and W be vector spaces, and let $T: V \to W$ be an isomorphism. Prove that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a linearly independent set of vectors in V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\}$ is a linearly independent set of vectors in W.

You can use the results in Exercise 29 on page 269, one of which is that if $T: V \to W$ is an isomorphism, then $T(\mathbf{0}) = \mathbf{0}$. *Hint: in addition to using the algebraic properties of an isomorphism (see Definition 4.13 (a) and (b)), you will also need to use that T is one-to-one.*

AP #4 Let V and W be vector spaces, and let $T : V \to W$ be an isomorphism. Prove that if $\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=V$, then $\operatorname{span}\{T(\mathbf{v}_1),\ldots,T(\mathbf{v}_k)\}=W$. Hint: in addition to using the algebraic properties of an isomorphism (see Definition 4.13 (a) and (b)), you will also need to use that T is onto, i.e. that $\operatorname{range}(T)=W$.