Linear Algebra
 MATH 224W - Spring 2015

Week 11: Dimension and Isomorphisms

Homework \#10
due Thursday, Nov. 5
§4.6 \#2(a)(c), 4(a)(c),10, 11, 13, 20(b), 22, 30
For $\# 13$, identify each polynomial $a+b t+c t^{2}+d^{3}$ with the 4 -vector $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ (or $\left[\begin{array}{l}d \\ c \\ b \\ a\end{array}\right]$ - but be consistent), and then follow the same approach as for $\# 11$. Make sure that the answer you provide consists of polynomials though (and not 4 -vectors).
When asked to "Generalize to $M_{m n}$ " in exercise $\# 30$, make sure to describe a basis for $M_{m n}$ and give the dimension of $M_{m n}$.

Writing Assignment \#10

due Monday, Nov. 9
AP \#1 Let $\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in a vector space. If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent and $\mathbf{u} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, prove that $\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

AP $\# 2$ Let $\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in a vector space. If $\mathbf{u} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, prove that

$$
\operatorname{span}\left\{\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}
$$

Hint: Let $S=\operatorname{span}\left\{\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ and $T=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$. To show $S=T$, you must show two things: $S \subseteq T$ and $T \subseteq S$. One of these is easy, and the other requires a little work.

AP $\# 3$ Let V and W be vector spaces, and let $T: V \rightarrow W$ be an isomorphism. Prove that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a linearly independent set of vectors in V, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is a linearly independent set of vectors in W.
You can use the results in Exercise 29 on page 269, one of which is that if $T: V \rightarrow W$ is an isomorphism, then $T(\mathbf{0})=\mathbf{0}$. Hint: in addition to using the algebraic properties of an isomorphism (see Definition 4.13 (a) and (b)), you will also need to use that T is one-to-one.

AP \#4 Let V and W be vector spaces, and let $T: V \rightarrow W$ be an isomorphism. Prove that if $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=V$, then $\operatorname{span}\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}=W$.
Hint: in addition to using the algebraic properties of an isomorphism (see Definition 4.13 (a) and (b)), you will also need to use that T is onto, i.e. that range $(T)=W$.

