Linear Algebra
 MATH 224W - Spring 2015

Week 13: Linear transformations, kernel and range

Homework \#12
due Friday, Nov. 20 at 7:00 pm
§4.9 \#9, 34, 35, 36
For $\# 9$ in $\S 4.9$, you can use a computer (http://www.wolframalpha.com is one option) to perform your row reduction as long as you clearly state what you have done.
$\S 6.1 \# 2,3,4,5,8(\mathrm{c}), 11(\mathrm{c}), 12(\mathrm{~b}), 13(\mathrm{~b}), 15,28$
For $\# 2-5$, if a function is linear, you do not need to explain why. However, for each function that is not a linear transformation, you MUST explain why it is not.

Writing Assignment \#12

due Monday, Nov. 30

AP \#1 Let A and B be $m \times n$ matrices. Prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$. Hint: start by showing that the columns of A together with the columns of B span the column space of $(A+B)$.

AP $\# 2$ Let A be an $n \times n$ matrix, and define a function $L: M_{n \times n} \rightarrow M_{n \times n}$ by $L(X)=A X-X A$. Prove that L is a linear transformation.

AP \#3 Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Prove that if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent vectors in V, then $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)$ are linearly dependent vectors in W.

