# Linear Algebra <br> MATH 224W - Spring 2015 

Week 14: Eigenvalues and eigenvectors

Homework \#13
due Thursday, Dec. 3
$\S 6.2 \# 1,2,4,6,16,25,26$
For \#16 in $\S 6.2$, you can use a computer (http://www.wolframalpha.com is one option) to perform your row reduction as long as you clearly state what you have done.
$\S 6.3 \# 8(\mathrm{a})(\mathrm{b}), 10(\mathrm{~b}), 22(\mathrm{a})(\mathrm{b})$

## Writing Assignment \#13 due Monday, Dec. 7

§7.1 \#11
Just prove this when $A$ is upper triangular.
AP \#1 Let $V$ and $W$ vector spaces with $\operatorname{dim} V=\operatorname{dim} W$, and assume that $L: V \rightarrow W$ is a linear transformation. Prove that $L$ is one-to-one if and only if $L$ is onto.
Hint: Range-Kernel Theorem. Remember that there are two things to show for an if and only if statement.

AP \#2 Let $V$ be an $n$-dimensional vector space. Assume that $L: V \rightarrow V$ is a linear transformation such that $L(L(\mathbf{v}))=\mathbf{0}$ for every $\mathbf{v} \in V$. Prove that

$$
\operatorname{dim}(\operatorname{range} L) \leq \frac{n}{2}
$$

Hint: First show that range $L \leq \operatorname{ker} L$.
AP \#3 Let $A$ be an $n \times n$ matrix. Prove that $A$ and $A^{T}$ have the same characteristic polynomial and, hence, that $A$ and $A^{T}$ have the same eigenvalues.

AP \#4 Let $A$ be an invertible $n \times n$ matrix, and assume that $\lambda$ is an eigenvalue of $A$. Prove that $\lambda \neq 0$, and that $\lambda^{-1}$ is an eigenvalue of $A^{-1}$.

