Linear Algebra MATH 224W – Spring 2015

Week 14: Eigenvalues and eigenvectors

Homework #13

due Thursday, Dec. 3

6.2 # 1, 2, 4, 6, 16, 25, 26

For #16 in §6.2, you can use a computer (http://www.wolframalpha.com is one option) to perform your row reduction as long as you clearly state what you have done.

6.3 # 8(a)(b), 10(b), 22(a)(b)

Writing Assignment #13

due Monday, Dec. 7

§7.1 #11

Just prove this when A is upper triangular.

- AP #1 Let V and W vector spaces with dim $V = \dim W$, and assume that $L: V \to W$ is a linear transformation. Prove that L is one-to-one if and only if L is onto. Hint: Range-Kernel Theorem. Remember that there are two things to show for an if and only if statement.
- AP #2 Let V be an n-dimensional vector space. Assume that $L: V \to V$ is a linear transformation such that $L(L(\mathbf{v})) = \mathbf{0}$ for every $\mathbf{v} \in V$. Prove that

$$\dim(\operatorname{range} L) \le \frac{n}{2}.$$

Hint: First show that range $L \leq \ker L$.

- AP #3 Let A be an $n \times n$ matrix. Prove that A and A^T have the same characteristic polynomial and, hence, that A and A^T have the same eigenvalues.
- AP #4 Let A be an invertible $n \times n$ matrix, and assume that λ is an eigenvalue of A. Prove that $\lambda \neq 0$, and that λ^{-1} is an eigenvalue of A^{-1} .