Week 5: Solving linear systems and elementary matrices

Writing Assignment #4

due Monday, Sept. 21

 $\S1.6 \#21$

Pg. 81 #18

Hint: In this problem you are assuming that an equation is true for *every n*-vector \mathbf{x} , so in particular it is true for the vectors $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ where

$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \dots, \mathbf{e}_n = \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix}.$$

For example, if you plug e_1 in for x, you get a true statement. What does it tell you?

AP#1 Prove that for all statements p, q, and r,

$$p\implies (q\vee r)\equiv [p\wedge(\sim q)]\implies r$$

You may prove this using a truth table or by using established logical equivalences. If you use logical equivalences, make sure to **cite them by name**. If you choose to use a truth table, you can learn about making tables in LATEX here: https://www.sharelatex.com/learn/Tables.

AP #2 Determine if implication is associative. That is, prove or disprove the following: for all statements p, q, and r,

$$(p \implies q) \implies r \equiv p \implies (q \implies r).$$

Extra Credit (Note: I will not give any hints about extra credit problems.) Call an $n \times n$ matrix A nilpotent if $A^k = 0$ for some positive integer k. Prove that if A is an $n \times n$ nilpotent matrix, then I - A is invertible (where I is the $n \times n$ identity matrix).

Homework #4

due Thursday, Sept. 24

- 0.1 # 2 (b)(d), 3(a)(c), 4(c)(d), 6(a)(b)(c)(e)(f), 8, 9 The exercises for 0.1 are available in the Documents section of Blackboard.
- AP #1 Write down the converse and contrapositive of the following statement.

"If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$."

- AP #2 Let P(x, y) denote the formula $x \ge y$. Also, let \mathbb{N} denote the set of natural numbers (nonnegative integers); that is, $\mathbb{N} = \{0, 1, 2, 3, ...\}$. Determine whether the following are true or false; justify your answers!
 - (a) $\forall x, y \in \mathbb{N}[P(x, y)]$
 - (b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}[P(x,y)]$
 - (c) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}[P(x, y)]$
 - (d) $\exists x, y \in \mathbb{N}[P(x, y)]$

- AP #3 Write down the negation of each of the following statements in such a way that negation symbols only appear next to the predicates p, q, or r.
 - (a) $\exists x \in \mathbb{R}[(\sim p(x)) \land q(x)]$
 - (b) $\forall x \in \mathbb{R}[p(x) \implies [\exists y \in \mathbb{N}[q(x,y) \land r(x,y)]]]$
 - (c) $\exists x, y \in \mathbb{N}[P(x, y)]$

AP #4 Disjunction and conjunction are associative. That is, for statements p, q, and r,

(a) $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$, and

(b) $(p \lor q) \lor r \equiv p \lor (q \lor r).$

Further, disjunction and conjunction distribute over one another. That is, for statements p, q, and r,

(c) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$, and

(d) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$

Prove (c) using a truth table. Each truth table should have 8 rows. You do not need to prove (a) or (d), but you should be aware that they are true so that you can make use of them in the future.