Linear Algebra
 MATH 224W - Spring 2015

Week 5: Solving linear systems and elementary matrices

Writing Assignment \#4

§1.6 \#21
Pg. 81 \#18
Hint: In this problem you are assuming that an equation is true for every n-vector \mathbf{x}, so in particular it is true for the vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ where

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \ldots, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

For example, if you plug \mathbf{e}_{1} in for \mathbf{x}, you get a true statement. What does it tell you?
AP\#1 Prove that for all statements p, q, and r,

$$
p \Longrightarrow(q \vee r) \equiv[p \wedge(\sim q)] \Longrightarrow r .
$$

You may prove this using a truth table or by using established logical equivalences. If you use logical equivalences, make sure to cite them by name. If you choose to use a truth table, you can learn about making tables in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ here: https://www. sharelatex.com/learn/Tables.

AP \#2 Determine if implication is associative. That is, prove or disprove the following: for all statements p, q, and r,

$$
(p \Longrightarrow q) \Longrightarrow r \equiv p \Longrightarrow(q \Longrightarrow r)
$$

Extra Credit (Note: I will not give any hints about extra credit problems.) Call an $n \times n$ matrix A nilpotent if $A^{k}=0$ for some positive integer k. Prove that if A is an $n \times n$ nilpotent matrix, then $I-A$ is invertible (where I is the $n \times n$ identity matrix).

Homework \#4

due Thursday, Sept. 24
$\S 0.1 \# 2(\mathrm{~b})(\mathrm{d}), 3(\mathrm{a})(\mathrm{c}), 4(\mathrm{c})(\mathrm{d}), 6(\mathrm{a})(\mathrm{b})(\mathrm{c})(\mathrm{e})(\mathrm{f}), 8,9$
The exercises for $\S 0.1$ are available in the Documents section of Blackboard.
AP \#1 Write down the converse and contrapositive of the following statement.

$$
\text { "If } \sum_{n=1}^{\infty} a_{n} \text { converges, then } \lim _{n \rightarrow \infty} a_{n}=0 . "
$$

AP $\# 2$ Let $P(x, y)$ denote the formula $x \geq y$. Also, let \mathbb{N} denote the set of natural numbers (nonnegative integers); that is, $\mathbb{N}=\{0,1,2,3, \ldots\}$. Determine whether the following are true or false; justify your answers!
(a) $\forall x, y \in \mathbb{N}[P(x, y)]$
(b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}[P(x, y)]$
(c) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}[P(x, y)]$
(d) $\exists x, y \in \mathbb{N}[P(x, y)]$

AP \#3 Write down the negation of each of the following statements in such a way that negation symbols only appear next to the predicates p, q, or r.
(a) $\exists x \in \mathbb{R}[(\sim p(x)) \wedge q(x)]$
(b) $\forall x \in \mathbb{R}[p(x) \Longrightarrow[\exists y \in \mathbb{N}[q(x, y) \wedge r(x, y)]]]$
(c) $\exists x, y \in \mathbb{N}[P(x, y)]$

AP \#4 Disjunction and conjunction are associative. That is, for statements p, q, and r,
(a) $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$, and
(b) $(p \vee q) \vee r \equiv p \vee(q \vee r)$.

Further, disjunction and conjunction distribute over one another. That is, for statements p, q, and r,
(c) $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$, and
(d) $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$.

Prove (c) using a truth table. Each truth table should have 8 rows. You do not need to prove (a) or (d), but you should be aware that they are true so that you can make use of them in the future.

