Linear Algebra
 MATH 224W - Spring 2015

Week 6: Solving linear systems, elementary matrices, and finding inverses

Writing Assignment \#5
due Monday, Sept. 28

AP \#1 This is not a proof, but please still type it up (carefully). Rewrite the following sentence in symbolic logic notation; \mathcal{F} denotes the set of all functions from \mathbb{R} to \mathbb{R}. Think carefully about the placement of quantifiers! Hint: This statement is an implication!

For all $a, b \in \mathbb{R}$ with $a<b$ and any function $f \in \mathcal{F}$ that is continuous on $[a, b]$, there is some $c \in[a, b]$ such that $f(c) \leq f(x)$ for all $x \in[a, b]$.

AP \#2 Rewrite the statement below as a universally quantified implication; then prove it using the direct method.
"The sum of two even integers is even."
AP \#3 Give a proof by contrapositive of the following statement.
"For all $x \in \mathbb{R}$, if x is positive and irrational, then \sqrt{x} is also irrational."
AP \#4 Give a proof by contradiction of $\# 4(\mathrm{~d})$ on page 80.
AP \#5 Disprove the following statement.
"The product of two irrational numbers is irrational."

Homework \#5

due Thursday, Oct. 1
§2.1 \#1(b), 4, 8
§2.2 \#2, 4, 8, 12, 14, 32
Hint: For $\# 12$, read the hint for $\# 10$. For $\# 32$, make sure to solve the system you create and find the polynomial $p(x)$.
$\S 2.3 \# 2$

