Linear Algebra MATH 224W – Spring 2015

Week 8: Vector Spaces

Writing Assignment #7

\$3.2 #10, 11, 15(a)Aim for short, concise proofs.

 $\S4.2 \#24$

- AP #1 Prove that if $A \in M_{n \times n}$ and every entry of A is a rational number, then det A is also a rational number. *Hint: try using the definition of the determinant. It is quite possible that your proof will be very short.*
- AP #2 Let n be an odd positive integer. Prove that if $A \in M_{n \times n}$ and $A^2 = 2I_n$, then some entry in A is an irrational number.

Homework #7

due Wednesday, Oct. 14

 $3.2 \ \#8, 9, 24(a), 26(b)$ For #8, and 9 make sure to cite any results you use.

 $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 0
\end{array}$

- $\S3.3 \#3, 4, 12$
- AP #1 Compute the following determinants using cofactor expansion (Theorem 3.10). *Hint: start your expansion along a row or column that has many zero entries.*
 - (a)

(1)
(h)
(D)

			(0)					
0	3	0		-1	0	0	-2	
1	-4	-1		5	6	7	8	
2	4	0		0	-7	0	0	
3	-1	0		0	3	-1	5	
				•				

due Monday, Oct. 19