Linear Algebra
 MATH 224W - Spring 2015

Week 9: Subspaces and Span

Homework \#8
due Thursday, Oct. 22
$\S 4.2 \# 2,4,7,8,10$
For $\# 7,8,10$ please change the directions to
"Give one property of Definition 4.4 that fails to hold."
$\S 4.3 \# 2,6,8(\mathrm{~b}), 10(\mathrm{~b})(\mathrm{c}), 16,18,30,33(\mathrm{a})(\mathrm{b})$
For \#8, see Example 4 in Section 4.2 for the definition of \mathbb{R}_{n}.
Note: when using the Subspace Criteria Theorem, don't forget to show that the set in question is nonempty.

Writing Assignment \#8

due Monday, Oct. 26
$\S 4.2 \# 25$
AP \#1 Prove that the set of all $n \times n$ symmetric matrices is a subspace of $M_{n \times n}$.
Note: again, when using the Subspace Criteria Theorem, don't forget to show that the set in question is nonempty.

AP $\# 2$ Let $A \in M_{n \times n}$, and let $\lambda \in \mathbb{R}$. Let W be the subset of \mathbb{R}^{n} defined by

$$
W:=\left\{\mathbf{v} \in \mathbb{R}^{n} \mid A \mathbf{v}=\lambda \mathbf{v}\right\}
$$

Prove that W is a subspace of \mathbb{R}^{n}.
AP $\# 3$ Let $W=\left\{A \in M_{2 \times 2} \mid \operatorname{tr}(A)=0\right\}$. (Recall that we proved that W is a subspace of $M_{2 \times 2}$.) Prove that W is spanned by the set

$$
S=\left\{\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

