Chapter I
(and some review)

Terminology
special sets of real numbers
positive: negative whole numbers and 0
(1) Integers (denoted $\mathbb{Z}): \ldots,-2,-1,0,1,2,3, \ldots$
(2) Rational Numbers (demoted Q): numbers than areable to be written as $\frac{a}{b}$ with a, b both integers and $b \neq 0$.
(3) Irrational Numbers: real numbers that are not irrational
\longrightarrow Ex Determine if each ot the following are integers, rational numbers, or irrational numbers
(a) $\frac{1}{2}$ rational
(c) $\frac{\pi}{3}$ irrational $-\frac{2}{3}$
(b) 17 integer, rational
(d) $0 . \overline{6}$ rational

Inequalities and interval notation

Ex Describe graphically and in symbols
"all real number between -7 and 2 , including -7 but not $2^{\prime \prime}$

Some other examples

* See book for others (Pg. 3)

Rectangular Coordinate System 1.1

Plotting Points

x-cord. y-coordinate

Q: how do you know if $(-4,3)$ is a point or an interval?
A: context

Graphing Equations by Plotting Points graph?

Ex Graph the equation $(y-1)^{2}=x+1$ by plotting points.
[(1) If easy, solve for y or x first

$$
x=(y-1)^{2}-1
$$

(2) Ping in for one variable and solve for other

x	y
3	3
0	2
-1	1
0	0
3	-1
8	-2
15	-3

(3) Plot the points and try to connect

The easiest points to find on a graph are the x any y-intercepts

Bet
${ }_{y=0} \rightarrow$. An $\underline{x-i n t e r c e p t ~ o f ~ a ~ g r a p h ~ i s w h e r e ~ i t ~ c r o s s e s ~}$ the x-axis
when \rightarrow A y-intercept

$$
x=0
$$

the y-axis

Ex Find and plot the x-and y-inter cepts of

$$
x^{2}+y^{2}+4 y=4
$$

x-intercepts: $y=0 \quad x^{2}=4 \Rightarrow x= \pm 2$

$$
y \text {-intercepts: } x=0 \quad \begin{aligned}
y^{2}+4 y-4=0 & \Rightarrow y=\frac{4 \pm \sqrt{16+16}}{2} \\
& \Rightarrow y=\frac{-4 \pm \sqrt{32}}{2} \\
& \Rightarrow y \approx 0.828,-4.828
\end{aligned}
$$

it's a circle
... but may need move point to see

Distance and rid points
Ore often wants to find the distance b / w two points or the midpoint of the line joining them.

Theorem The distance $b / c \quad\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Returning to the picture, let's find the \longrightarrow mid point. We see that...
x-value of midpoint: average of x-values Y-value ot midpoint: average of y-values

Theorem The midpoint of the segment connecting $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ is

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Ex consider $P=(-3,7), Q=(4,3)$. Find the distance b/w $P\{Q$ and midpoint of the segment joining them.
distance: $\quad d=\sqrt{(4-(-3))^{2}+(3-7)^{2}}$

$$
=\sqrt{49+16}=\sqrt{65} \approx 8.06
$$

midpoint: $\left(\frac{-3+4}{2}, \frac{7+3}{2}\right)=\left(\frac{1}{2}, 5\right)$

Circles 1.2

Q: what is a circle, in words?
Q: how can we find an equation for a circle?

Def A circle is the set of all points that are the same distance, called the radius, from a fixed point, called the center.

(x, y) is on the circle

$$
\Longleftrightarrow \begin{aligned}
& \text { distance from } \\
& (h, k) \text { to }(x, y) \\
& \text { is } r
\end{aligned}
$$

Standard form of a circle
If a circle has its center at the point (h, k) and has radius r, then the circle is described by the equation

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \quad(\text { with } r>0)
$$

Ex Let C be the circle centered at $(3,-1)$ that also passeg through the point $(6,3)$. write an equation for C and determine if $(2,5)$ is also on C

Need

- center: $(3,-1)$
- radius: ??
r must be the distance
from $(3,-1)$ to $(6,3)$ so

$$
r=\sqrt{(3-6)^{2}+(-1-3)^{2}}=\sqrt{25}=5
$$

Standard equation

$$
(x-3)^{2}+(y+1)^{2}=25
$$

Also $(2-3)^{2}+(5+1)^{2}=1+36=37 \neq 25$
So No $(2,5)$ is not on the circle

Ex Find an equation of a circle that has a diameter with endpoints $(-2,-1)$ and $(3,5)$.

Need

- center: $\left(\frac{-2+3}{2}, \frac{-1+5}{2}\right)=\left(\frac{1}{2}, 2\right)$
- radius: ??
radius must be distance from $\left(\frac{1}{2}, 2\right)$ to $(3,5)$
standard eqn

$$
\begin{aligned}
r & =\sqrt{\left(\frac{1}{2}-3\right)^{2}+(2-5)^{2}} \\
& =\sqrt{(2.5)^{2}+3^{2}}=\sqrt{15.25}
\end{aligned}
$$

$$
\left(x-\frac{1}{2}\right)^{2}+(y-2)^{2}=15.25
$$

Ex Determine which ot the following describe a circle. For those that do, find the center and radius.
(a) $(x-1)^{2}+y-2=9$ No y only to first power. it is a parabola
(b) $x^{2}+y^{2}+2 y+1=0 \Rightarrow x^{2}+(y+1)^{2}=0$

No does not have a positive radius
(C) $x^{2}+6 x+y^{2}=2 \Rightarrow x^{2}+6 x+\left(\frac{6}{2}\right)^{2}+y^{2}=2+\left(\frac{6}{2}\right)^{2}$

$$
\Rightarrow x^{2}+6 x+9+y^{2}=11
$$

complete square:
divide by 2 and square

$$
\Rightarrow(x+3)^{2}+y^{2}=11 \text { Yes }
$$

center: $(-3,0)$
radius: $\sqrt{11}$

Functions '\& Relations
Relations encode how two quantities or variables are related.

This table gives the hours worked and money earned by 6 people

Call this xHours worked	Money Earned
10	160
5	45
7	70
10	90
20	300
6	30

Def A relation is any collection of ordered pairs.

Ex
(a) $\{(10,160),(5,45),(7,70),(0,90),(20,300),(6,30)\}$ is a relation
(b) $\left\{\left(\frac{1}{2}, \pi\right),\left(\frac{1}{3}, \pi\right),\left(\frac{1}{5}, \pi\right)\right\}$
is a relation
(c) The set of all points satifying

$$
x^{2}+(y-2)^{2}=9
$$

is a relation

(d) The set af all points satisying

$$
y=\sqrt{x+5}+2
$$

is a relation

Let

- The collection of all x-values appearing in a relation is called the domain.
- The collection of ally -values appearing in a relation is the range

Ex Find the domain and range of each relation above
(a) Domain: $\{5,6,7,10,20\}$

Range: $\{30,45,70,90,160,300\}$
(b) Domain: $\{1 / 2,1 / 3,1 / 5\}$

Range: $\{\pi\}$
(c) Domain: $[-3,3]$

- domain is set of x-values

Range: $[-1,5]$
Let's do this graphically...
center is $(0,2)$
radius is 3

(d) Domain: $[-5, \infty) \leftarrow$

Range: $[2, \infty)$
Let's do this algebraically.

- $y=\sqrt{x+5}+2 \Rightarrow x+5 \geqslant 0 \Rightarrow x \geqslant-5$
- $\sqrt{x+5} \geqslant 0$ so $\sqrt{x+5}+2 \geqslant 2$

Functions
Functions model situations where there are inputs and corresponding outputs. In this case, an input should only yield one output.

Det A relation defines y as a function of x if for every x in the domain, there is only one corresponding value of y in the range.

Ex Determine which of the four relations in the first example detine y as a function of x.
(a) Not a function
the x-value 10 corresponds to 2 y-values: 160,90
(b) Yes, it's a function
(c) No, it's not a function

Remember the graph:
center is $(0,2)$
radius is 3

So, when $x=0, y$ can be -1 or 5
(d) Yes, it's a function
algebraically: if you plug in x, you get only one y-value

This can be
seen graphically too

Thinking graphically we get the following test to determine if a function is a relation or not.

Vertical line test
A relation is a function if its graph does not intersect any vertical line in more than one point.

Function notation
Notice that $y=x^{2}+4 x+1$ defines y as a function of $x, b / c$ every x yields only one y-value. Or graphically,

In this case, we often write

$$
y=f(x) \quad(\text { or } g(x), r(x), \ldots)
$$

Here $f(x)$ means "the y-value associated to x "
For this problem, $f(x)=x^{2}+4 x+1$, so

$$
\begin{aligned}
& f(0)=(0)^{2}+4(0)+1=1 \\
& f(-2)=(-2)^{2}+4(-2)+1=-3 \\
& f(a)=a^{2}+4 a+1 \\
& f(a+h)=(a+h)^{2}+4(a+h)+1
\end{aligned}
$$

Note that
$f(a)$ does not mean "f times a" !! why not?.. context.

We can of ten talk about the concepts from before in this new notation: intercepts, domain, range.

Ex Find the x and y-intercepts of

$$
f(x)=x^{2}+4 x+1
$$

- x-int. when $y=0 \quad$ (and $y=f(x)$)

Solve $0=x^{2}+4 x+1$

$$
\begin{aligned}
& x=\frac{-4 \pm \sqrt{16-4}}{2}=\frac{-4+\sqrt{12}}{2}, \frac{-4-\sqrt{12}}{2} \\
& \approx-0.268 \\
& \approx-3.732
\end{aligned}
$$

- y-int. when $x=0$

$$
y=f(0)=0^{2}+4(0)+1=1 \quad y=1
$$

Ex Find the domain of eachot the following.
(a) $h(x)=\frac{3-4 x}{x^{2}-9}$
(b) $f(t)=\frac{1+\sqrt{3-t}}{t^{2}+1}$
(a) denominator must not be O

$$
0=x^{2}-9=(x-3)(x+3) \Rightarrow x-3=0 \quad x+3=0
$$

Domain: all x except $x=3,-3$

$$
(-\infty,-3) \cup(-3,3) \cup(3, \infty)
$$

(b). denominator must not be 0 no problem - denominator is al ways positive

- number in square root must not be negative need $3-t \geqslant 0 \Rightarrow 3 \geqslant t$
Domain: all $t \leqslant 3$ OR $\quad(-\infty, 3]$
Ex Consider $y=g(x)$ defined by

(a) Find $g(-3), g(0), g(4)$
(b) Find the domain and range of $g(x)$.
(a) $g(-3)=0, g(0)$ undefined, $g(4)=-1$
(b) Domain: $(-\infty, 0) \cup(2,3]$

Range: $(-\infty, 3)$

Linear Equations i LiNear Functions 1.4

Def A linear equation is one that cam be written in the form no squares, cubes, roots...
$A x+B_{y}=C \longleftarrow$ standard form for sone numbers A, B, C (with A, B notboth zero.)

* The graph of a linear equation is always a line.

Ex
(a) $2 x+3 y=6$
(b) $11 y=22$
(c) $-\frac{1}{2} x=3$

Slope: $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2}{3}$
Slope: 0
Slope: undefined
y-intercept: $y=2$
y-int: $y=2$
x-intercept: $x=3$
x-int: none
x-int: $x=-6$

Other forms for lines
Suppose you know the slope at a line and one point on it.
slope: m
point: $\left(x_{1}, y_{1}\right)$
Can you write an equation for the line?
If (x, y) is any point on the lice, then

$$
\begin{array}{r}
\frac{y-y_{1}}{x-x_{1}}=m \Longrightarrow y-y_{1}=m\left(x-x_{1}\right) \\
e_{\text {point-slo }}
\end{array}
$$

c point-slope form.
Now, suppose you know the slope and y-intercept.
slope: m
y-intercept: $y=b$ \& represents the point $(0, b)$
If (x, y) is amy point on the line, then

$$
\begin{aligned}
\frac{y-b}{x-0}=m & \Rightarrow y-b=m x \\
& y=m x+b
\end{aligned}
$$

C slope-intercept form
Point-slope form (section 1.5)
If a line has slope m and $(x, y$,$) is any$ point on the line, then on equation for the line is $\quad y-y_{1}=m\left(x-x_{1}\right)$

Slope - Inter sept Form
If a line has slope m and y-intercept $y=b$, then an eq. for the line is

$$
y=m x+b
$$

Ex Let L be the line passing through the points $\left(\frac{1}{2}, 3\right),(2,5)$.
(a) Graph L
(b) Find the slope of L
(c) Write an eq. for L in slope-intercept form.
(a)

(b)

$$
m=\frac{5-3}{2-1 / 2}=\frac{2}{3 / 2}=\frac{4}{3}
$$

(C) Point-slope:

$$
y-5=\frac{4}{3}(x-2)
$$

Now convert to slope-intercept

$$
\begin{aligned}
& y=\frac{4}{3} x-\frac{8}{3}+5 \\
& y=\frac{4}{3} x+\frac{7}{3}
\end{aligned}
$$

Dat

- Constant functions are those of the form $f(x)=b$ for some number b
- linear functions are those of the form $f(x)=m x+b$ for sone number $m \neq 0$
* the graphs of constant and linear functions are lines.

Average Rate of Change
If (x, y) and $\left(x_{2}, y_{2}\right)$ are any 2 points on a line, then $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ is always the Sane number (the slope). It describes how the line is changing.

Bet Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be points on the graph of any function f. The average rate of change of f on the interval $\left[x_{1}, x_{2}\right]$ is

$$
\begin{aligned}
& \text { aug. rate ot } \\
& \text { chare } \\
& \text { on }\left[x_{1}, x_{2}\right]
\end{aligned}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Ex Find the arg. rate at change ot $g(x)=\frac{1}{2} x^{2}-5$ on $[2,4]$.

$$
\frac{g(4)-g(2)}{4-2}=\frac{3-(-3)}{2}=3
$$

* what does this represent?

* if ne modeled $g(x)$ by a linear function on $[2,4]$, this is the slope.

Applications of LiNear Equations

Parallel and Perpendicular lines

Note:

- lines L_{1} and L_{2} are parallel if the have the some slope: $m_{1}=m_{2}$

- L_{1} and L_{2} are perpendicular if the meet in a right angle: $m_{1}=-\frac{1}{m_{2}}$
 $\uparrow_{\text {negative }}$ reciprocal

Ex $L e+L$ be the line described by

$$
x-2 y=4
$$

(a) Find ar equation ot a line through $(2,-3)$ and parallel to L.
(b) Find an equation ot a line through $(2,-3)$ and perpendicular to L.
(a) To write anequation we reed a point and the stope.

$$
\text { point: }(2,-3)
$$

Slope: same a slope of $L=\frac{1}{2}$

$$
\begin{aligned}
\cdot x-2 y=4 & \Leftrightarrow-2 y=-x+4 \\
& \Longleftrightarrow y=\frac{1}{2} x-2
\end{aligned}
$$

- slope-intercept form
- Slope of L is $\frac{1}{2}$

Answer
the line through $(2,-3)$ and parallel to L is

$$
\begin{gathered}
y+3=\frac{1}{2}(x-2) \\
\text { OR } \\
y=\frac{1}{2} x-4
\end{gathered}
$$

(b) For a line through L and perp. to $L \ldots$ point: $(2,-3)$
slope: neg. reciprocal ot slope of $L=-2$
Answer

$$
y+3=-2(x-2)
$$

$O R$

$$
y=-2 x-1
$$

Linear Models

Ex suppose that during a period of drought the average water level in a pond is model by a linear function of the time since the drought began. If after I day of drought, the level is 6.55 ft and after 4 days of drought the level is 5.8 ft . Determine the average water level after 20 days of drought.

* let $\omega(x)$ be the function that outputs the a verage water level after x days

$$
\begin{aligned}
& \omega(1)=6.55 \\
& \omega(4)=5.8
\end{aligned}
$$

want to find w(20)

* $\omega(x)$ is linear. so
$y=\omega(x)=m x+b$ for some numbers m and b.

Let's
visualize this

* write an equation for $w(x)=y$
slope: $m=\frac{5.8-6.55}{4-1}=-0.25$
point: (1,6.55)
point-slope: $y^{y^{\omega}-y_{1}=m(x)} \quad\left(x-x_{1}\right)$

$$
y-6.55=-0.25(x-1)
$$

simplify:

$$
\begin{aligned}
& y=-0.25(x-1)+6.55 \\
& y=-0.25 x+0.25+6.55 \\
& y=-0.25 x+6.8
\end{aligned}
$$

so

$$
\omega(x)=-0.25 x+6.8
$$

* Use the equation to find w(20)

$$
\omega(20)=-0.25(20)+6.8=1.8 f t
$$

Analyzing Graphs ' More 1.7

Symmetry

symmetric about y-axis

Algebraic test
$\begin{array}{ll}\text { substituting } & \text { substituting } \\ x \rightarrow-x \text { yields } & y \rightarrow-y \text { yields } \\ \text { amequivalent } & \text { an equivalent } \\ \text { equation } & \text { equation }\end{array}$

symmetric about origin substituting $x \rightarrow-x$ and $y \rightarrow-y$ yields an equivalent equation

Ex show that the graph of $y=x^{3}$ is symmetric about the origin but not about the y-axis.
origin: $\begin{aligned} & x \rightarrow-x \\ & y \rightarrow-y \\ & y\end{aligned}$ yields $-y=(-x)^{3} \Longleftrightarrow-y=(-1)^{3} x^{3}$

$$
\begin{aligned}
& \Longleftrightarrow-y=-x^{3} \\
& \Longleftrightarrow y=x^{3}
\end{aligned}
$$

some as original, so yes
y-axis: $x \rightarrow-x$ yields $y=(-x)^{3} \Longleftrightarrow y=-x^{3}$
is not equivalent to original (point $(1,1)$ is onowisinal, but not om this one)

Dat

- A function is even if $f(-x)=f(x)$ for all x in domain ot f. (Symmetric about y-axis)

$$
G^{\text {OR }}-f(-x)=f(x) \text { so } \underset{\substack{x \rightarrow-x \\ y \rightarrow--1}}{\substack{x}}
$$

- A function is odd if $f(-x)=-f(x)$ for original all mind amain at f. (symmetric about origin)

Ex show that $f(x)=\sqrt{9-x^{2}}$ is even. Verify by graphing.

$$
\begin{gathered}
f(-x)=\sqrt{9-(-x)^{2}}=\sqrt{9-x^{2}}=\frac{f(x)}{\text { equal }}
\end{gathered}
$$

To graph $y=\sqrt{9-x^{2}}$, note that $y^{2}=9-x^{2}$ So $x^{2}+y^{2}=9$. \quad y must be positive, so only top of the circle

Piecewise Detived Functions
It's often the case the real world phenomena are model by different functions at different times. This leads to piecewise defiled functions.

Ex Let $f(x)$ be the function

$$
f(x)= \begin{cases}-2 x+1 & \text { for } x \leqslant 0 \\ \sqrt{3-x^{2}} & \text { for } 0<x<2 \\ \sqrt{3 x-5} & \text { for } x \geqslant 2\end{cases}
$$

Find each of $f(-1), f(0), f(1), f(2), f(3)$.

$$
\begin{array}{ll}
f(-1)=-2(-1)+1=3 & f(2)=3(2)-5=1 \\
f(0)=-2(0)+1=1 & f(3)=3(3)-5=4 \\
f(1)=3-1^{2}=2 &
\end{array}
$$

Graphically

Not "continuous" b / c of jumps at $x=0$ and $x=2$.

Informal Deft A function is continuous on an interval if its graph has no holes, breaks, or jumps.

Ex Graph $g(x)$ and determine if it is continuous.

$$
g(x)= \begin{cases}2 x+7, & x<-2 \\ 3, & -2 \leq x<2 \\ \underline{x}+1, & x>2\end{cases}
$$

Yes, it's continuous.

Increasing/Decreasing/Maxima/Minima Worksheet 01 seenext page

Definition: Increasing/Decreasing/Constant
Let f be a function and I an interval.

- f is increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}<x_{2}$. (y-values increase from left to right.)
- f is decreasing on I if if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}<x_{2}$. (y-values decrease from left to right.)
- f is constant on I if if $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all x_{1} and x_{2}. (y-values stay the same.)

1. The graph of $f(x)$ is below.

(a) On what intervals
(b) On what intervals is f decreasing?
(c) On what intervals is f constant?

$$
(-4,-2),(2,4),(5, \infty)
$$

$(-4.5,-4),(-2,2),(4,5)$
$(-\infty,-4.5)$

Definition: Relative (or Local) Minima and Maxima

1. $f(c)$ is called a relative minimum value of f if $f(c) \leq f(x)$ for all x near c.
2. $f(c)$ is called a relative maximum value of f if $f(c) \geq f(x)$ for all x near c.
3. Let $f(x)$ be the same as in the previous problem.
(a) Find all relative minimum values of f.

$$
\begin{array}{r}
-3.25(\text { when } x=-4) \\
-1.5 \quad(\text { when } x=2) \\
1.5(\text { when } x=5)
\end{array}
$$

(b) Find all relative maximum values of f.

- 1 (when $x=-4.5$)
1.5 (when $x=-2$)
$4(w \operatorname{len} x=4)$

3. Sketch the graph of f, and find all relative maxima and minima on its domain.

$$
f(x)= \begin{cases}x^{2} & \text { for }-2 \leq x \leq 1 \\ -x+2 & \text { for } x>1\end{cases}
$$

rel. min at $0(a+x=0)$ rel. max of 1 (at $x=1$)

4. Explain why $g(x)=3-2 x$ has no relative maxima and no relative minima.

$$
\begin{aligned}
& g(x) \text { is always } \\
& \text { decreasing }
\end{aligned}
$$

Transformations ot Graphs 1.6

Basic Functions

$$
f(x)=x
$$

$$
\begin{array}{r|c}
f(x) & =x^{3} \\
x & f(x) \\
\hline-2 & -8 \\
-1 & -1 \\
0 & 0 \\
1 & 1 \\
2 & 8
\end{array}
$$

$$
\begin{array}{r|c|}
f(x) & =|x| \\
x & f(x) \\
\hline-2 & 2 \\
-1 & 1 \\
0 & 0 \\
1 & 1 \\
2 & 2
\end{array}
$$

$$
f(x)=x^{2}
$$

x	$f(x)=y$
-2	4
-1	1
0	0
1	1
2	4

$$
\begin{array}{r|ll}
f(x)=\sqrt{x} & y=\sqrt{x} \\
y^{2}=x \\
x & f(x) & \\
\hline-1 & D N E & \\
0 & 0 & \\
1 & 1 & \\
2 & \sqrt{z} \approx 1.4 \\
4 & 2 &
\end{array}
$$

$$
f(x)=\frac{1}{x}
$$

x	$f(x)$
-2	$-\frac{1}{2}$
-1	-1
$-1 / 2$	-2
0	0
$1 / 2$	2
1	1
2	$\frac{1}{2}$

Vertical ' Horizontal Translations (Shifts)

Tim the graph of $y=f(x)+k$ is the graph of $y=f(x)$ shift upldown by k units if $k>0$ if $k<0$
$y=f(x)$

$$
y=f(x-2)
$$

$$
y=f(x+3)
$$

x	$x-2$	$f(x-2)$
0	-2	2
2	0	1
3	1	0
5	3	2

Thu The graph of $y=f(x+h)$ is the graph of $y=f(x)$ shifted

- right if h is negative
- left if h is positive

You can always plot a couple of points to check.

Reflections

x	$f(x)$
0	0
1	1
4	2

x	$-f(x)$
0	-0
1	-1
4	-2

x	$-x$	$f(-x)$
0	0	0
-1	1	1
-4	4	2
		5

Thu
(1) The graph of $y=-f(x)$ is the graph at $y=f(x)$ reflected over the x-axis
(2) The graph at $y=f(-x)$ is the graph ot $y=f(x)$ reflected over the y-axis.

Ex Graph each of the following.
(1) $f(x)=-x^{2}$

Recall:
(2) $f(x)=3-x^{2}$
(3) $h(x)=3-(x+4)^{2}$

Ex Find a sequence of translations and reflections to transform $f(x)=\sqrt{x}$ into $g(x)=\sqrt{2-x}-3$. Then graph $g(x)$.
one possibility is

$$
\sqrt{x} \longrightarrow \sqrt{\substack{\text { reflect } \\
\text { overy-axis }}} \sqrt{\substack{\text { shift right } \\
\text { by } 2}} \left\lvert\, \sqrt{-(x-2)^{\prime}} \xrightarrow{\text { shift down }} \begin{aligned}
& \text { by } 3
\end{aligned}\right.
$$

Ex The function $g(x)$ be low has been translated and reflected from $f(x)=x^{3}$. Find an equation for $g(x)$.

Shrinking i Stretching
Ex Graph each of the following.
(a) $f(x)=x^{2}$

(b) $g(x)=2 x^{2}$
(c) $h(x)=\frac{1}{2} x^{2}$

x	$f(x)$
-2	4
-1	1
0	0
1	1
2	4

x	$2 \cdot f(x)$
-2	$2 \cdot 4=8$
-1	$2 \cdot 1=2$
0	$2 \cdot 0=0$
1	$2 \cdot 1=2$
2	$2 \cdot 4=8$

x	$\frac{1}{2} \cdot f(x)$
-2	$\frac{1}{2} \cdot 4=2$
-1	$1 / 2 \cdot 1=1 / 2$
0	$1 / 2 \cdot 0=0$
1	$1 / 2 \cdot 1=1 / 2$
2	$1 / 2 \cdot 4=2$

The Let a be a positive number. The graph of $y=a f(x)$ is the graph of $y=f(x)$ stretched vertically by a factor of a.

$$
0<a<1 \text { results ina shrinking. }
$$

Similarly,
Thu Let a be positive. The graph at $y=f(a x)$ is the graphot $y=f(x)$ stretched horizontally by a factor of $\frac{1}{a}$, reciprocal!

When stretching vertically or horizontally it's best to plot points to avoid mistakes

Ex Graph $h(x)=-3|x-5|$

$$
|x| \underset{\substack{\text { shift } \\ \text { right } \\ 5}}{\rightarrow}|x-5| \underset{\substack{\text { stretch } \\ \text { vertically } \\ \text { by }}}{\longrightarrow} 3|x-5| \underset{\substack{\text { effect } \\ \text { over } \\ \text { x-axis }}}{\rightarrow}-3|x-5|
$$

Ex where is the vertex of the parabola $f(x)=7-(x+5)^{2}$? Does the parabola open up or down?

Algebra of functions (A.K.A. Combining functions) 1.8
$(f+g)(x) \quad(f-g)(x) \quad(f \cdot g)(x) \quad\left(\frac{f}{g}\right)(x)$
we can add, subtract, multiply, and divide functions to get new functions. We can also compose...
Composition
$(f \circ g)(x)$ means $f(g(x))$, or in a picture

* The domain of $(f \circ g)$ is all x in the domain
ot g for which $g(x)$ is also in the domain of f.
Ex Use the tables to compute $(f \circ g)(4)$ and $(g \circ f)(5)$

x	$f(x)$	x	$g(x)$
-1	2	-1	3
0	3	0	7
5	0	4	-1

$$
\begin{aligned}
& (f \circ g)(4)=f(g(4))=f(-1)=2 \\
& (g \circ f)(5)=g(f(5))=g(0)=7
\end{aligned}
$$

Ex Let $f(x)=x^{2}-9 x, g(x)=\sqrt{2 x}, h(x)=\frac{1}{5+x}$
(a) Find $(f+g)(8)=f(8)+g(8)=(64-72)+\sqrt{16}=-4$
(b) Find $\left(\frac{f}{g}\right)(4)=\frac{f(4)}{g(4)}=\frac{16-36}{2 \sqrt{2}}=\frac{-10}{2 \sqrt{2}}=\frac{-5}{\sqrt{2}}$
(c) Find $f(h(-2))=f(h(-2))=f\left(\frac{1}{3}\right)=\frac{1}{7}-3=\frac{-26}{9}$

Ex with f, g, h as before
(a) Find $\left(\frac{g}{f}\right)(x)$ and determine the dom ain
(b) Find $(f \circ h)(x)$ "
(c) Find (hoh) (x)"

$$
f(x)=x^{2}-9 x, g(x)=\sqrt{2 x}, \quad h(x)=\frac{1}{5+x}
$$

(a) $\left(\frac{g}{f}\right)(x)=\frac{g(x)}{f(x)}=\frac{\sqrt{2 x}}{x^{2}-9 x}$

Domain
(1) $2 x \geqslant 0 \Rightarrow x \geqslant 0$
(2)

$$
\left.\begin{array}{l}
x^{2}-9 x \neq 0 \\
x^{2}-9 x=x(x-9)
\end{array}\right\} \Rightarrow x \neq 0,9
$$

Domain: $(0,9) \cup(9, \infty)$
(b)

$$
\begin{aligned}
(f \circ h)(x)=f(h(x))= & \frac{\left(\frac{1}{5+x}\right)^{2}-\frac{9}{5+x}}{} \\
& \frac{1}{(5+x)^{2}}-\frac{9 \cdot(5+x)}{(5+x)^{2}}=-\frac{44-9 x}{(5+x)^{2}}
\end{aligned}
$$

Domain $x \neq-5$ or $(-\infty,-5) \cup(-5, \infty)$
(c)

$$
\begin{aligned}
(h \circ h)(x)=h(h(x)) & =\frac{1}{5+\frac{1}{5+x}}=\frac{1}{\frac{5(5+x)}{5+x}+\frac{1}{5+x}} \\
& =\frac{1}{\frac{26+5 x}{5+x}}=\frac{5+x}{26+5 x}
\end{aligned}
$$

Domain
notin
domain of

$$
26+5 x \neq 0 \Rightarrow x \neq \frac{-26}{5}
$$

Domain: $x \neq-5, \frac{26}{5}$

Difference Quotients

$$
x_{2}=x_{1}+h
$$

$\begin{aligned} & \text { Average change } \\ & \text { over }\left[x_{1}, x_{2}\right]\end{aligned}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
or

$$
\begin{aligned}
& =\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{x_{1}+h-x_{1}} \\
& =\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{x_{1}}
\end{aligned}
$$

$\frac{f(x+h)-f(x)}{h}$ is called the difference quotient

Ex Find the difference quotient at each of the following, simplifying as much as possible.
(a) $f(x)=-4 x^{2}-2 x+6$
optional

$$
\xrightarrow{\text { nat }}(b) g(x)=\frac{1}{x}
$$

(a)

$$
\begin{aligned}
\frac{f(x+h)}{h}-f(x) & =\frac{\sqrt{4(x+h)^{2}-2(x+h)+6}-\left(-4 x^{2}-2 x+6\right)}{h} \\
& =\frac{-4\left(x^{2}+2 x h+h^{2}\right)-2 x-2 h+66+4 x^{2}+2 / x-66}{h} \\
& =\frac{-4 x^{2}-8 x h-4 h^{2}-2 h+4 x^{2}}{h} \\
& =\frac{-8 x h-4 h^{2}-2 h}{h} \\
& =\frac{h(-8 x-4 h-2)}{h}=-8 x-2-4 h
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{g(x+h)-g(x)}{h} & =\frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\frac{\frac{x}{x(x+h)}-\frac{x+h}{x(x+h)}}{h} \\
& =\frac{\frac{x-x-h}{x(x+h)}}{h} \\
& =\frac{\frac{-h}{x(x+h)}}{h} \\
& =\frac{-h}{x(x+h)} \cdot \frac{1}{h}=\frac{-1}{x(x+h)}
\end{aligned}
$$

