Definition: Increasing/Decreasing/Constant
Let f be a function and I an interval.

- f is increasing on I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}<x_{2}$. (y-values increase from left to right.)
- f is decreasing on I if if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}<x_{2}$. (y-values decrease from left to right.)
- f is constant on I if if $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all x_{1} and x_{2}. (y-values stay the same.)

1. The graph of $f(x)$ is below.

(a) On what intervals is f increasing?
(b) On what intervals is f decreasing?
(c) On what intervals is f constant?

Definition: Relative (or Local) Minima and Maxima

1. $f(c)$ is called a relative minimum value of f if $f(c) \leq f(x)$ for all x near c.
2. $f(c)$ is called a relative maximum value of f if $f(c) \geq f(x)$ for all x near c.
3. Let $f(x)$ be the same as in the previous problem.
(a) Find all relative minimum values of f (b) Find all relative maximum values of f.
4. Sketch the graph of f, and find all relative maxima and minima on its domain.

$$
f(x)= \begin{cases}x^{2} & \text { for }-2 \leq x \leq 1 \\ -x+2 & \text { for } x>1\end{cases}
$$

4. Explain why $g(x)=3-2 x$ has no relative maxima and no relative minima.

