02 - Rational Functions & Vertical Asymptotes

Definition: Rational Functions

We call f(x) a **rational function** if f(x) can be written in the form $f(x) = \frac{p(x)}{q(x)}$ for some polynomials p(x) and q(x).

1. Which of the following are rational functions? Justify your answers.

(a)
$$f(x) = \frac{2}{1-x^3}$$

(b) $g(x) = 2 + \frac{7}{x}$
(c) $h(x) = \frac{7x + \sqrt{x}}{x^3 + x - 1}$
(d) $r(x) = 5x^3 + 3x - \sqrt{2}$

Definition: Limiting behavior

- 1. $x \to c^+$ means that "x approaches the value c from the right (but does not equal c)"
 - For example, $x \to 5^+$ means we are considering x-values like 5.5, 5.1, 5.01, 5.001, ...
- **2.** $x \to c^-$ means that "x approaches the value c from the left (but does not equal c)"
 - For example, $x \to 5^-$ means we are considering x-values like $4.5, 4.9, 4.99, 4.999, \ldots$
- **2.** Suppose the graph of a function f(x) is given below. Fill in the blanks.

Definition: Vertical Asymptote

A line x = c is a **vertical asymptote** of y = f(x) if at least one of the following are true:

- As $x \to c^+$, $f(x) \to \infty$ • As $x \to c^-$, $f(x) \to \infty$
- As $x \to c^+$, $f(x) \to -\infty$ • As $x \to c^-$, $f(x) \to -\infty$

- **3.** What are the vertical asymptotes of the graph of y = f(x) in the previous example?
- 4. Let f(x) = ^{2x}/_{x-3}. Answer the following by plugging in x-values closer and closer to 3.
 (a) As x → 3⁻, f(x) → _____

(b) As
$$x \to 3^+$$
, $f(x) \to _$

(c) Is the line x = 3 an asymptote of the graph y = f(x). Why or why not?

Strategy: Finding Vertical Asymptotes of Rational functions

The line x = c is a vertical asymptote of the rational function $f(x) = \frac{p(x)}{q(x)}$ if q(c) = 0 and $p(c) \neq 0$. If both q(c) = 0 and p(c) = 0, then factor, cancel common factors, and check again.

5. Find all vertical asymptotes of each of the following rational functions.

(a)
$$f(x) = \frac{x+3}{2x-7}$$

(b)
$$g(x) = \frac{x^2 + 5x + 6}{x + 2}$$

(c)
$$h(x) = \frac{x-5}{2x^2+4x-3}$$