02 - Rational Functions \& Vertical Astymptotes

Definition: Rational Functions

We call $f(x)$ a rational function if $f(x)$ can be written in the form $f(x)=\frac{p(x)}{q(x)}$ for some polynomials $p(x)$ and $q(x)$.

1. Which of the following are rational functions? Justify your answers.
(a) $f(x)=\frac{2}{1-x^{3}}$
(c) $h(x)=\frac{7 x+\sqrt{x}}{x^{3}+x-1}$
(b) $g(x)=2+\frac{7}{x}$
(d) $r(x)=5 x^{3}+3 x-\sqrt{2}$

Definition: Limiting behavior

1. $x \rightarrow c^{+}$means that " x approaches the value c from the right (but does not equal c)"

- For example, $x \rightarrow 5^{+}$means we are considering x-values like $5.5,5.1,5.01,5.001, \ldots$

2. $x \rightarrow c^{-}$means that " x approaches the value c from the left (but does not equal c)"

- For example, $x \rightarrow 5^{-}$means we are considering x-values like $4.5,4.9,4.99,4.999, \ldots$

2. Suppose the graph of a function $f(x)$ is given below. Fill in the blanks.

(a) As $x \rightarrow 1^{-}, f(x) \rightarrow$ \qquad (c) As $x \rightarrow 2^{-}, f(x) \rightarrow$ \qquad (e) As $x \rightarrow 4^{-}, f(x) \rightarrow$ \qquad
(b) As $x \rightarrow 1^{+}, f(x) \rightarrow$
(d) As $x \rightarrow 2^{+}, f(x) \rightarrow$ \qquad (f) As $x \rightarrow 4^{+}, f(x) \rightarrow$ \qquad

Definition: Vertical Asymptote

A line $x=c$ is a vertical asymptote of $y=f(x)$ if at least one of the following are true:

- As $x \rightarrow c^{+}, f(x) \rightarrow \infty$
- As $x \rightarrow c^{-}, f(x) \rightarrow \infty$
- As $x \rightarrow c^{+}, f(x) \rightarrow-\infty$
- As $x \rightarrow c^{-}, f(x) \rightarrow-\infty$

3. What are the vertical asymptotes of the graph of $y=f(x)$ in the previous example?
4. Let $f(x)=\frac{2 x}{x-3}$. Answer the following by plugging in x-values closer and closer to 3 .
(a) As $x \rightarrow 3^{-}, f(x) \rightarrow$ \qquad
(b) As $x \rightarrow 3^{+}, f(x) \rightarrow$ \qquad
(c) Is the line $x=3$ an asymptote of the graph $y=f(x)$. Why or why not?

Strategy: Finding Vertical Asymptotes of Rational functions

The line $x=c$ is a vertical asymptote of the rational function $f(x)=\frac{p(x)}{q(x)}$ if $q(c)=0$ and $p(c) \neq 0$. If both $q(c)=0$ and $p(c)=0$, then factor, cancel common factors, and check again.
5. Find all vertical asymptotes of each of the following rational functions.
(a) $f(x)=\frac{x+3}{2 x-7}$
(b) $g(x)=\frac{x^{2}+5 x+6}{x+2}$
(c) $h(x)=\frac{x-5}{2 x^{2}+4 x-3}$

