03 - Rational Functions & End Behavior

Definition: Limiting behavior at infinity

- 1. $x \to \infty$ means that "x increases without bound"
 - $x \to \infty$ means we are considering x-values like 100, 1000, 10000, ...
- **2.** $x \to -\infty$ means that "x decreases without bound"
 - $x \to -\infty$ means we are considering x-values like $-100, -1000, -10000, \dots$
- Let f(x) = ^{3x + 8}/_{2x}. Answer the following by plugging in several appropriate x-values.
 (a) As x → ∞, f(x) → ____
 (b) As x → -∞, f(x) → ____
- 2. Let g(x) = ⁷/_x. Answer the following by plugging in several appropriate x-values.
 (a) As x → ∞, g(x) → _____
 (b) As x → -∞, g(x) → _____

Definition: Horizontal Asymptote

A line y = L is a **horizontal asymptote** of y = f(x) if at least one of the following are true: • As $x \to \infty$, $f(x) \to L$ • As $x \to -\infty$, $f(x) \to L$

- **3.** What are the vertical asymptotes of the functions in the first two problems?
- 4. Find all vertical and horizontal asymptotes of the graph given below.

(a) Vert. asymptotes:

(b) Hor. asymptotes:

Strategy: Finding Horizontal Asymptotes of Rational functions

Suppose that

$$f(x) = \frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0}$$

Then, as $x \to \infty$ or $x \to -\infty$, $x \to \infty$, $f(x) \approx \frac{a_n x^n}{b_m x^m}$, so

1. if deg(TOP) > deg(BOTTOM), then as $x \to \infty$ and $x \to -\infty$, $f(x) \to \pm \infty$

• *f* has no horizontal asymptote;

2. if deg(TOP) < deg(BOTTOM), then as
$$x \to \infty$$
 and $x \to -\infty$, $f(x) \to 0$

- y = 0 is the horizontal asymptote of f;
- **3.** if deg(TOP) = deg(BOTTOM), then as $x \to \infty$ and $x \to -\infty$, $f(x) \to \frac{a_n}{b_m}$;
 - $y = \frac{a_n}{b_m}$ is the horizontal asymptote of f.
- 5. Find all horizontal and vertical asymptotes of each of the following rational functions.

(a)
$$f(x) = \frac{x+3}{2x^2-7}$$

(b)
$$g(x) = \frac{2x^2 + 8x + 8}{7 + 5x^2}$$

(c)
$$h(x) = \frac{x^3 - 1}{x^2 + 4x - 5}$$