03 - Rational Functions \& End Behavior

Definition: Limiting behavior at infinity

1. $x \rightarrow \infty$ means that " x increases without bound"

- $x \rightarrow \infty$ means we are considering x-values like $100,1000,10000, \ldots$

2. $x \rightarrow-\infty$ means that " x decreases without bound"

- $x \rightarrow-\infty$ means we are considering x-values like $-100,-1000,-10000, \ldots$

1. Let $f(x)=\frac{3 x+8}{2 x}$. Answer the following by plugging in several appropriate x-values.
(a) As $x \rightarrow \infty, f(x) \rightarrow$ \qquad (b) As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
2. Let $g(x)=\frac{7}{x}$. Answer the following by plugging in several appropriate x-values.
(a) As $x \rightarrow \infty, g(x) \rightarrow$ \qquad
(b) As $x \rightarrow-\infty, g(x) \rightarrow$ \qquad

Definition: Horizontal Asymptote

A line $y=L$ is a horizontal asymptote of $y=f(x)$ if at least one of the following are true:

- As $x \rightarrow \infty, f(x) \rightarrow L$
- As $x \rightarrow-\infty, f(x) \rightarrow L$

3. What are the vertical asymptotes of the functions in the first two problems?
4. Find all vertical and horizontal asymptotes of the graph given below.

(a) Vert. asymptotes: \qquad
(b) Hor. asymptotes: \qquad

Suppose that

$$
f(x)=\frac{a_{n} x^{n}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+\cdots+b_{1} x+b_{0}} .
$$

Then, as $x \rightarrow \infty$ or $x \rightarrow-\infty, x \rightarrow \infty, f(x) \approx \frac{a_{n} x^{n}}{b_{m} x^{m}}$, so

1. if deg (TOP) $>\operatorname{deg}$ (BOTTOM), then as $x \rightarrow \infty$ and $x \rightarrow-\infty, f(x) \rightarrow \pm \infty$

- f has no horizontal asymptote;

2. if $\operatorname{deg}($ TOP $)<\operatorname{deg}($ BOTTOM $)$, then as $x \rightarrow \infty$ and $x \rightarrow-\infty, f(x) \rightarrow 0$

- $y=0$ is the horizontal asymptote of f;

3. if $\operatorname{deg}($ TOP $)=\operatorname{deg}($ BOTTOM $)$, then as $x \rightarrow \infty$ and $x \rightarrow-\infty, f(x) \rightarrow \frac{a_{n}}{b_{m}}$;

- $y=\frac{a_{n}}{b_{m}}$ is the horizontal asymptote of f.

5. Find all horizontal and vertical asymptotes of each of the following rational functions.
(a) $f(x)=\frac{x+3}{2 x^{2}-7}$
(b) $g(x)=\frac{2 x^{2}+8 x+8}{7+5 x^{2}}$
(c) $h(x)=\frac{x^{3}-1}{x^{2}+4 x-5}$
