06 - Exponential Functions

Definition: Exponential Functions

We call $f(x)$ an exponential function if $f(x)$ can be written in the form $f(x)=b^{x}$ for some positive constant b. The number b is called the base.

1. Determine which of the following are exponential functions.
(a) x^{3}
(c) x^{x}
(b) 3^{x}
(d) $\left(\frac{2}{\pi}\right)^{x}$
2. Consider the exponential functions 2^{x} and $\left(\frac{1}{2}\right)^{x}$. Fill in the following table of values, and then sketch the graph of each function.

x	2^{x}	$\left(\frac{1}{2}\right)^{x}$
4		
3		
2		
1		
0		
-1		
-2		
-3		
-4		

3. Use your work above to describe the domain, range, and end behavior of each of the following functions. Are there any asymptotes?
(a) $f(x)=2^{x}$
(b) $g(x)=\left(\frac{1}{2}\right)^{x}$

Theorem: Shape of exponential graphs
Consider the exponential function b^{x}.

- If $b>1$, then b^{x} is increasing. As $x \rightarrow \infty, f(x) \rightarrow \infty$. As $x \rightarrow-\infty, f(x) \rightarrow 0$.
- If $0<b<1$, then b^{x} is decreasing. As $x \rightarrow \infty, f(x) \rightarrow 0$. As $x \rightarrow-\infty, f(x) \rightarrow \infty$.

Definition: Base e

The constant e is defined to be the limiting value of $\left(1+\frac{1}{x}\right)^{x}$ as $x \rightarrow \infty$. It is approximately 2.71828...
4. Use the fact that e is close to 2 to sketch a graph of e^{x}. Is it increasing or decreasing? What is the end behavior?

5. Graph both of the following functions, and plot 3 points on each graph. Determine the range of each and all asymptotes.
(a) $f(x)=4^{x+1}+1$
(b) $g(x)=-\left(\frac{1}{3}\right)^{x}-2$

