08 - Logarithmic Functions

Definition: Logarithmic Functions

The function $\log _{b} x$ is the inverse function of the exponential function b^{x}. A function of the form $\log _{b} x$ is called a logarithmic function. Because $\log _{b} x$ is the inverse of b^{x}, we have that

$$
y=\log _{b} x \Longleftrightarrow b^{y}=x
$$

We usually write $\ln x$ in place of $\log _{e} x$ and $\log x$ in place of $\log _{10} x$.

1. Rewrite each logarithmic equation as an equivalent exponential equation, and vice versa.
(a) $2=\log _{9} 81$
(c) $10^{x}=\frac{1}{100}$
(b) $\ln 1=0$
(d) $e^{3}=y$
2. Fill in the following table of values for the exponential function 2^{x} and use it to find a table of values for $\log _{2} x$. Then sketch the graph of $\log _{2} x$.

3. Use your work above to describe the domain, range, and end behavior of $\log _{2} x$. Are there asymptotes?

Theorem: Shape of logarithmic graphs

Consider the logarithmic function $\log _{b} x$. The domain is $(0, \infty)$.

- If $b>1$, then $\log _{b} x$ is increasing. As $x \rightarrow \infty, \log _{b} x \rightarrow \infty$. As $x \rightarrow 0^{+}, \log _{b} x \rightarrow-\infty$.
- If $0<b<1$, then $\log _{b} x$ is decreasing. As $x \rightarrow \infty, \log _{b} x \rightarrow-\infty$. As $x \rightarrow 0^{+}, \log _{b} x \rightarrow \infty$.

4. Graph the function $f(x)=-\ln (x+2)-1$. Determine the domain and all asymptotes.

5. Determine the domain of each of the following.
(a) $g(x)=7+\log \left(25-x^{2}\right)$.
(b) $h(x)=\frac{13}{1-\ln x}$.
6. Simplify each expression.
(a) $\log _{3} 81$
(b) $\log _{2}\left(\frac{1}{32}\right)$
(c) $\ln \left(\frac{1}{e^{2}}\right)$
7. If $5=2^{3 x-2}$, what is x ?
