08 – Logarithmic Functions

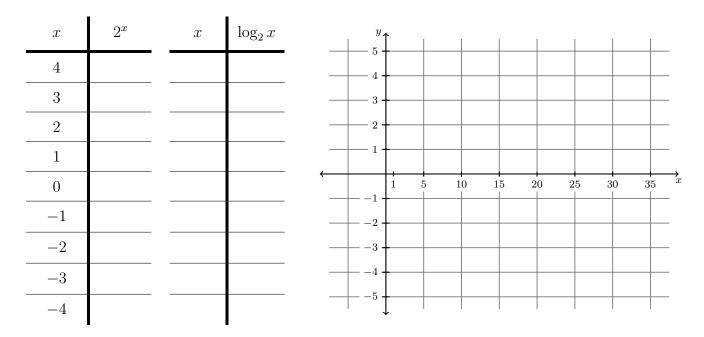
Definition: Logarithmic Functions

The function $\log_b x$ is the *inverse function* of the exponential function b^x . A function of the form $\log_b x$ is called a **logarithmic function**. Because $\log_b x$ is the inverse of b^x , we have that

$$y = \log_b x \iff b^y = x.$$

We usually write $\ln x$ in place of $\log_e x$ and $\log x$ in place of $\log_{10} x$.

- 1. Rewrite each logarithmic equation as an equivalent exponential equation, and vice versa.
 - (a) $2 = \log_9 81$ (c) $10^x = \frac{1}{100}$
 - (b) $\ln 1 = 0$ (d) $e^3 = y$
- 2. Fill in the following table of values for the exponential function 2^x and use it to find a table of values for $\log_2 x$. Then sketch the graph of $\log_2 x$.

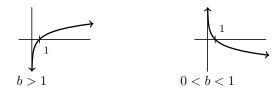


3. Use your work above to describe the domain, range, and end behavior of $\log_2 x$. Are there asymptotes?

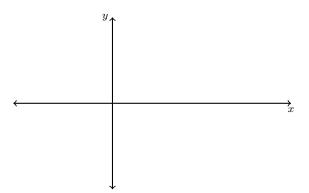
Theorem: Shape of logarithmic graphs

Consider the logarithmic function $\log_b x$. The domain is $(0, \infty)$.

- If b > 1, then $\log_b x$ is increasing. As $x \to \infty$, $\log_b x \to \infty$. As $x \to 0^+$, $\log_b x \to -\infty$.
- If 0 < b < 1, then $\log_b x$ is decreasing. As $x \to \infty$, $\log_b x \to -\infty$. As $x \to 0^+$, $\log_b x \to \infty$.



4. Graph the function $f(x) = -\ln(x+2) - 1$. Determine the domain and all asymptotes.



5. Determine the domain of each of the following.

(a)
$$g(x) = 7 + \log(25 - x^2).$$
 (b) $h(x) = \frac{13}{1 - \ln x}.$

6. Simplify each expression.

(a)
$$\log_3 81$$
 (b) $\log_2 \left(\frac{1}{32}\right)$ (c) $\ln \left(\frac{1}{e^2}\right)$

7. If $5 = 2^{3x-2}$, what is x?