09 - Properties of Logarithms

Theorem: Basic properties of logarithms

- $\log _{b}\left(b^{x}\right)=x$
- $\log _{b} 1=0$
- $b^{\log _{b}(x)}=x$
- $\log _{b} b=1$

Theorem: Algebraic properties of logarithms

- $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
- $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
- $\log _{b}\left(x^{p}\right)=p \log _{b}(x)$

1. Expand each logarithm into a sum or difference of logarithms of just a single variable, with no powers.
(a) $\log _{2}\left(z y^{3}\right)$
(c) $\log _{5}\left(\frac{25 x}{z^{2} \sqrt{y}}\right)$
(b) $\log \left(\frac{x}{y z}\right)$
2. Rewrite each expression as a single logarithm, with no number in front.
(a) $2 \ln x+3 \ln y-\ln z$
(b) $5 \ln (x)-\frac{1}{3} \ln y-2 \ln (x y)$
3. Determine if each statement is true or false.
(a) $\log \left(\frac{x+y}{z}\right)=\log x+\log y-\log z$
(b) $\ln \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right)=-\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$
4. Simplify each expression as much as possible by using rules of logs to expand.
(a) $\log _{2}(\sqrt[4]{y \sqrt{2}})$
(b) $\ln \left(\frac{2 x\left(x^{2}+3\right)^{8}}{\sqrt{4-3 x}}\right)$

Theorem: Change of base formula

$$
\log _{b} x=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}
$$

5. Use your calculator to compute each of the following.
(a) $\log _{2} 153$
(b) $\log _{\frac{1}{3}} 100$
6. If $3^{1+x^{2}}=100$, what are the possible values for x ? Round to the nearest tenth, if needed.
