11 - Creating and analyzing exponential models

1. A person wants to invest money now to help pay for their child to go to college in 11 years. If the person can invest their money at a 4% interest rate, compounded continuously, how much do they need to invest now to ensure they have $\$ 10,000$ when their child goes to college in 11 years?
2. A certain bacteria culture begins with 300 cells and grows by 12% each hour. Write a model for the number of bacteria after t hours, and use it to determine when the culture will reach 2000 cells.
3. Given an initial quantity of a radioactive substance, the amount of the substance, measured in the unit becquerel (Bq), remaining after t years can be modeled by the equation $Q(t)=Q_{0} e^{k t}$.
(a) What does Q_{0} represent? Why?
(b) Suppose that 3000 Bq of a radioactive substance is measured in a sample initially, and 2600 Bq is present 10 years later. Write a specific model of the form $Q(t)=Q_{0} e^{k t}$ for the amount of the substance remaining after t years by determine the values of Q_{0} and k.
(c) After how many years will only 50 Bq of the substance remain?
(d) By what percentage does the amount the substance change each year?
4. Carbon-14 is a radioactive isotope. Given an initial quantity of Carbon-14, the amount of Carbon-14 remaining after t years can be modeled by $Q(t)=Q_{0} e^{k t}$.
(a) Use that Carbon-14 has a half life of 5730 years, to determine the value of k in the above model.
(b) If there is an initial amount of 1500 Bq in an object, how much Carbon- 14 will remain after 10,000 years?
