13 – Unit Circle & Trigonometric Functions

Definition: Unit Circle

The **unit circle** is the circle of radius 1 with center at the origin. A point (x, y) is on the unit circle precisely when $x^2 + y^2 = 1$.

1. Determine if each point is on the unit circle or not.

(a)
$$\left(\frac{3}{5}, \frac{4}{5}\right)$$
 (c) $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

(b)
$$(1,1)$$
 (d) $(0,-1)$

- 2. Label each spoke in the unit circle below with its angle.
- 3. Label each point on the unit circle in the first quadrant. Use the triangles off to the side to help you.
- 4. Use the points you found in the first quadrant to help label the other points on the unit circle.

Definition: Trigonometric Functions

Let θ be an angle in radians, and let (x, y) be the point on the unit circle corresponding to θ . Then

•
$$\sin \theta = y$$

• $\csc \theta = \frac{1}{y}$ (if $y \neq 0$)
• $\cos \theta = x$
• $\sec \theta = \frac{1}{x}$ (if $x \neq 0$)
• $\tan \theta = \frac{y}{x}$ (if $x \neq 0$)
• $\cot \theta = \frac{x}{y}$ (if $y \neq 0$)

- 5. Let θ be the angle corresponding to the point $\left(\frac{3}{5}, \frac{4}{5}\right)$, which is on the unit circle. Compute sec θ .
- 6. Use your unit circle on the front to compute sine, cosine, and tangent of each of the the following.

(a)
$$135^{\circ}$$
 (c) $\frac{5\pi}{6}$

(b)
$$-210^{\circ}$$
 (d) $\frac{i\pi}{2}$

- 7. Suppose you know that sin(t) = 0.7. Compute each of the following.
 - (a) $2\sin(t)$ (c) $\sin(t+2\pi)$

(b)
$$\sin^2(t)$$
 (d) $\sin(-t)$

Theorem: Periodic and even/odd properties of sine and cosine • $sin(t + 2\pi) =$ • $cos(t + 2\pi) =$ • sin(-t) = • cos(-t) = • sin t is an _____ function • cos t is an _____ function