14 - Trig. with Triangles \& Fundamental Properties

Theorem: Trigonometric functions using circles of radius r

If (x, y) is a point corresponding to θ on a circle of radius r centered at the origin, then $x=r \cos \theta$ and $y=r \sin \theta$.

- $\sin \theta=\frac{y}{r} \quad$ - $\csc \theta=\frac{r}{y}$
- $\cos \theta=\frac{x}{r}$
- $\sec \theta=\frac{r}{x}$
- $\tan \theta=\frac{y}{x}$
- $\cot \theta=\frac{x}{y}$

Theorem: Trigonometric functions using triangles

Let θ be an acute angle in a right triangle. The trigonometric functions can be determined in terms of the ADJACENT side, opposite side, and hYPOTENUSE as follows.

- $\sin \theta=\frac{\text { OPP }}{\text { HYP }}$
- $\csc \theta=\frac{\text { HYP }}{\text { OPP }}$
- $\cos \theta=\frac{\text { ADJ }}{\text { HYP }} \quad$ - $\sec \theta=\frac{\text { HYP }}{\text { ADJ }}$
- $\tan \theta=\frac{\text { OPP }}{\text { ADJ }}$
- $\cot \theta=\frac{\mathrm{ADJ}}{\mathrm{OPP}}$

1. Compute sine, cosine, and tangent of each angle below.
(a)

(b)

2. A 5.5 foot-tall person is standing on on a 200 foot cliff next to the ocean. The person sees a sailboat and estimates that angle of depression (tilting their head downward from looking straight ahead to looking at the sailboat) is about 30°. How far off the the coast is the sailboat?
3. In each of the four quadrants, label if each of sine, cosine, and tangent are positive or negative .

Theorem: Trigonometric functions in terms of sine and cosine

- $\csc \theta=$
- $\sec \theta=$

Theorem: Pythagorean identities

- $\sin ^{2} \theta+\cos ^{2} \theta=1$
- $\tan ^{2} \theta+1=\sec ^{2} \theta$

4. Suppose that you don't know θ, but you do know that θ is in the fourth quadrant and $\cos \theta=\frac{\sqrt{7}}{3}$.
(a) Use a Pythagorean identity to find $\sin \theta$.
(b) Find the values of all of the trigonometric functions at θ.
5. The point $(-2,-\sqrt{5})$ is on the terminal side of the angle θ. (See below.) Find the values of all of the trigonometric functions at θ.

