15 - Graphing Sine and Cosine

1. Use your unit circle to fill in the following table of values for $\sin x$. Then plot each of the corresponding points, and use them to sketch the graph of $\sin x$.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π
$\sin x$													

2. Fill in the table of values for each function below. You can use a calculator if needed.

x	$-\pi$	$-\frac{5 \pi}{6}$	$-\frac{2 \pi}{3}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$2 \sin x$													
$\sin (2 x)$													

3. What is the amplitude and period of each of the functions in the previous problem?

Theorem: Shape of $\sin x$ and $\cos x$
The functions $\sin x$ and $\cos x$ have domain $(-\infty, \infty)$, range $[-1,1]$, and a period of 2π.

$\cos x$

Theorem: Graphing sinusoidal functions

Suppose you want to graph

$$
y=A \sin (B x-C)+D \quad \text { or } \quad y=A \cos (B x-C)+D
$$

- The amplitude is $|A|$.
- The vertical shift is D.
- The period is $\frac{2 \pi}{B}$.
- The phase shift (horizontal shift) is $\frac{C}{B}$.

4. Find the amplitude, period, phase shift, and vertical shift of each of the following.
(a) $f(x)=2 \cos \left(\frac{1}{2} x-\frac{\pi}{4}\right)+1$
(b) $g(x)=-7 \sin \left(\frac{\pi}{2} x+\pi\right)-3$
5. Graph each of $y=2 \cos \left(\frac{1}{2} x\right)$ and $y=2 \cos \left(\frac{1}{2} x-\frac{\pi}{4}\right)+1$ below. Draw at least one full period, and label several points.

6. An object oscillating up and down on a spring is moving in simple harmonic motion, so the height of the object at time t can be modeled by a function of the form $f(t)=A \sin (B t-C)$. Suppose that at time $t=0$ an object attached to a spring is at height 0 ft and is moving downwards. If the period of the oscillations is 5 seconds and the amplitude is 1.7 ft , write an equation of the form $f(t)=A \sin (B t-C)$ to model the height at time t in seconds.
