16 - Graphing (co)secant and (co)tangent

1. Let's work to graph $\csc x$ by following the steps below. Remember that $\csc x=\frac{1}{\sin x}$.
(a) Graph $\sin x$ below.
(b) Determine the values of $\csc \left(-\frac{3 \pi}{2}\right), \csc \left(-\frac{\pi}{2}\right), \csc \left(\frac{\pi}{2}\right)$, and $\csc \left(\frac{3 \pi}{2}\right)$. Plot them below.
(c) Explain why $\csc x$ has vertical asymptotes at $x=-2 \pi,-\pi, 0, \pi, 2 \pi$. Draw them below.
(d) Sketch the graph of $\csc x$ below.

2. Let's work to graph $\tan x$ by following the steps below. Remember that $\tan x=\frac{\sin x}{\cos x}$.
(a) Explain why $\tan x$ has zeros at $x=-2 \pi,-\pi, 0, \pi, 2 \pi$. Plot them below.
(b) Explain why $\tan x$ has vertical asymptotes at $x=-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}$. Draw them below.
(c) Label the intervals on the x-axis below where $\tan x$ is positive and where it's negative.
(d) Sketch the graph of $\tan x$ below.

Theorem: Domain, range, asymptotes, and period of the trig. functions

Function	Domain	Range	VA's	Period
$\sin x$				
$\cos x$				
$\tan x$				
$\csc x$				
$\sec x$				
$\cot x$				

3. Graph $y=\frac{3}{2} \sec \left(\frac{1}{2} x\right)$ below. Draw at least two full periods, and label several points.

4. Graph $y=-2 \tan \left(x-\frac{\pi}{2}\right)$ below. Draw at least two full periods, and label several points.

