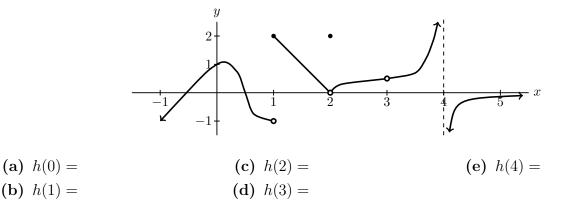
		Day 2 Day 1
	Author 1	
	Author 2	
	Author 3	
Group Work 02	Author 4	

1. Let f(x) be a mystery function for which some values are given approximately in the following table.

- (a) Based on this data, what do you think is the value of f(0)?
- (b) Ask me what the mystery function is, and fill in the blank: f(x) =______. Does this change your answer about f(0)? Explain.

2. Suppose the graph of a function h(x) is given below. Find the value of each of the following below.



- **3.** Answer the following about f and h above.
 - (a) $\lim_{x \to 0} f(x) =$ (c) $\lim_{x \to 1} h(x) =$ (e) $\lim_{x \to 3} h(x) =$ (b) $\lim_{x \to 0} h(x) =$ (d) $\lim_{x \to 2} h(x) =$ (f) $\lim_{x \to 4} h(x) =$
- 4. Answer the following about f and h above.
 - (a) $\lim_{x \to 0^{-}} f(x) =$ (c) $\lim_{x \to 1^{-}} h(x) =$ (e) $\lim_{x \to 2^{-}} h(x) =$
 - (b) $\lim_{x \to 1^+} h(x) =$ (d) $\lim_{x \to 2^+} h(x) =$ (f) $\lim_{x \to 4^-} h(x) =$

5. Investigate $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right)$ by following the steps below.

(a) Fill in the table below, and use it to make a guess about $\lim_{x \to 0^+} \sin\left(\frac{\pi}{2x}\right)$. (I did the first one.) $\frac{x}{\left|\frac{1}{2}\right|} \frac{\frac{1}{50}}{\frac{1}{100}} \frac{\frac{1}{100}}{\frac{1}{1000}}$ $\sin\left(\frac{\pi}{2x}\right) \sin(\pi) = \boxed{0}$ (π)

(b) Find the value of $\sin\left(\frac{\pi}{2x}\right)$ when $x = \frac{1}{1001}$. Does this change your guess about $\lim_{x \to 0^+} \sin\left(\frac{\pi}{2x}\right)$?

(c) Use your phone to graph $\sin\left(\frac{\pi}{2x}\right)$ at www.desmos.com or www.wolframalpha.com. Give your final to $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right)$ below. Make sure to explain!

 $\begin{array}{ll} \textbf{6. Find the following given that } g(x) = \begin{cases} \ln x, & \text{if } 0 < x < 1 \\ e^{x-1} - 1, & \text{if } 1 < x \leq 2. \\ x + e, & \text{if } x > 2 \end{cases} \\ \begin{array}{ll} \textbf{(a)} & \lim_{x \to 1^+} g(x) = & & \textbf{(d)} & \lim_{x \to 2^+} g(x) = \\ \textbf{(b)} & \lim_{x \to 1^-} g(x) = & & \textbf{(e)} & \lim_{x \to 2^-} g(x) = \\ \textbf{(c)} & \lim_{x \to 1} g(x) = & & \textbf{(f)} & \lim_{x \to 2} g(x) = \end{cases} \end{array}$

(g) As a follow-up, find all a > 0 such that $\lim_{x \to a} f(x)$ DNE.