

Author 1	 Day 2 Day 1
Author 2	
Author 3	
Author 4	

Group Work 09

1. The graph of $y = \sin(x)$ is below.

2. The graph of $y = \cos(x)$ is below.

3. Find the derivative of $f(x) = \frac{\tan x + 1}{3x + \cos x}$

(a) What is the geometric meaning of $\frac{d}{dx} [\sin(x)|_{x=0}$.

(b) Use the graph of
$$y = \sin(x)$$
 to find $\frac{d}{dx} [\sin(x)|_{x=0}$.

(a) What is the geometric meaning of
$$\frac{d}{dx} [\cos(x)|_{x=0}$$
.

(b) Use the graph of
$$y = \cos(x)$$
 to find $\frac{d}{dx} [\cos(x)|_{x=0}$.

4. Evaluate the following derivatives.

(a)
$$\frac{d}{dx} \left[\cos(3x) \right]$$

(b)
$$\frac{d}{dx} \left[e^{-4x} \right]$$

(c)
$$\frac{d}{dx}\left[\sqrt[3]{x^3+\frac{1}{x}}\right]$$

(d)
$$\frac{d}{dx} \left[e^{7x} \sin(1 - x^{\pi}) \right]$$

(e)
$$\frac{d}{dx} \left[\cos^5 \left(\frac{3x}{1 + \tan x} \right) \right]$$