2.1 Tangent + Velocity Problems

GW-01

Q: But, what do we mean by the (instantaneous) velocity of an object? Velocity is a rate of change, but at a particular instant, nothing is changing!?

Instantaneous velocity will be defined to be the "limiting value" of the average velocities, ie.

$$
V(1)=\lim _{t \rightarrow 1} \frac{h(t)-h(1)}{t-1} \quad \text { More later!! }
$$

* So, limits are un avoid able!

A Geometric Connection

GW-02
The stope of the tangent line (hence the line itself) will be defined as the "limiting value" of the slopes of the sec ant lines.

* limits are unavoidable!
2.2 Limit of a function

GW-O3 \# 1,2

GW-03 Limit def, $\# 3$
τ have them identify confusing parts
GW-03 one-sided def, \#4,5,6

Notice that...
The $\lim _{x \rightarrow a} f(x)=L$ if and on $l y$ if $\lim _{x \rightarrow a^{-}} f(x)=L$ AND $\lim _{x \rightarrow a^{+}} f(x)=L$. GW-04 Inf. limit def, \#1

$$
G W-04 \text { V. } 4 \text { get, } \# 2-5
$$

2.3 Limit Laws

Q: what is $\lim _{x \rightarrow 2} \frac{7 x^{3}}{5-x}$?

$$
\ldots \text { well as } x \rightarrow 2,5-x \rightarrow 3 \text { and } x^{3} \rightarrow 8 \text {, so } \frac{7 x^{3}}{5-x} \rightarrow \frac{56}{3}
$$

... but how do ne justify this?

Limit Laws Suppose that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$.

1. and 2. $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=L \pm M$
2. $\lim _{x \rightarrow a}\left[c f(x)^{\prime}\right]^{L}=c \lim _{x \rightarrow a} f(x)=c L$, for cony con stand
3. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=L \cdot M$
4. $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{L}{M}$ if $M \neq 0$.
5. $\lim _{x \rightarrow a}(f(x))^{n}=L^{n}$
6. $\lim _{x \rightarrow a} c=c$

(others)

$$
\begin{aligned}
& \text { (others) } \sqrt[n]{f^{\prime}(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L} \\
& \text { II. }
\end{aligned}
$$

provided $L>0$ when n is even.
Ex Use the limit laws to find $\lim _{x \rightarrow 2} \frac{7 x^{3}}{5-x}$.
use laws to break into
 building blocks

Nice... but don't really want to that again...

Direct Substitution If f is a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$.
just plug in

* So, DS tellsus that $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x-1}=\frac{0}{-2}=0$
* But, DS does Not apply to $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1} \ldots$ seewhy?

Ex Find $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}$.
Not an answer!

* Dr does Not apply - it yields $\frac{0}{0}$ Try to manipulate function.

$$
\begin{array}{r}
\lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{(x-1)(x+1)}{x+1}=\underbrace{}_{x \rightarrow-1}=\lim _{x \rightarrow c}(x-1)=-2 \\
\text { limit ignores } x=-1 \\
\frac{(x-1)(x+1)}{x+1}=x-1 \text { whenever } x \neq-1
\end{array}
$$

Gw-05 Strategy, \# $\mid(a),(b),(c)$
Ex Find $\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h}$.

* DS yields $\frac{0}{0}$, so try to manipulate.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h} & =\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h} \frac{(1+h)}{(1+h)} \\
& =\lim _{h \rightarrow 0} \frac{1-(1+h)}{h(1+h)}
\end{aligned}
$$

clear denominator ... or combine fractions in numerator

$$
\begin{aligned}
& \operatorname{limit}_{\underset{i g n o v e s}{i g}}^{\underset{0}{ }} \quad\left\{=\lim _{n \rightarrow 0} \frac{-h}{n(1+h)}\right. \\
& \lim _{h \rightarrow 0} \frac{-1}{1+h}=-1
\end{aligned}
$$

$$
G w-04 \quad \# \mid(d)(e)(f)
$$

Squeeze Theorem
Idea:

Theorem If

- $f(x) \leqslant g(x) \leqslant h(x)$ for all x near a (except possibly at a)

AND

- $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=L$
then $\lim _{x \rightarrow a} g(x)=L$.
Ex Recall $\lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)$ DNE
 But what about $x \sin \left(\frac{1}{x}\right)$?

$$
\text { Find } \lim _{x \rightarrow 0^{+}} x \sin \left(\frac{1}{x}\right)
$$

* what to do? DS yields $0 \cdot \sin \left(\frac{1}{0}\right) ? ?$ simplify??

Try squeeze Th. Note that

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1 \Rightarrow-x^{0} \leq x \sin \left(\frac{1}{x}\right) \leq y^{0}(x>0)
$$

Since $\lim _{x \rightarrow 0^{+}}-x=\lim _{x \rightarrow 0^{+}} x=0$, the Squeeze Thu tells us that $\lim _{x \rightarrow 0^{+}} x \sin \left(\frac{1}{x}\right)=0$.

FYI
$y=x$

$$
y=x \sin \left(\frac{1}{x}\right)
$$

2.5 continuity

Q: What do you think it means for a function to be continuous (a ta point)?

GW-06 \#1 quick look
Continuity (Intuitive def.) A function is
continuous if you can draw its graph with out lifting your pen. That is, the graph has NO

* $\lim _{x \rightarrow a} f(x) \neq f(a)$ o holes removable discontinuities
* $\lim _{x \rightarrow \infty} f(x)$ not \cdot breaks \longleftarrow infinite discontinuities (V.A.s)
$\lim _{x \rightarrow a} f(x)$ ONE $\{$ jumps \longleftarrow jump dis continuities
* $\lim _{x \rightarrow a} f(x)$ ONE . other weird stu $f f$
(GW-OG \#1,2 together

$$
G W-06 \quad \# 3
$$

GW-06 \#4,5 together

Theorem (continuity Laws) If f, g are continuous at a, then so are $f+g, f-g, f \cdot s$, and $\frac{f}{g}$ provided $g(a) \neq 0$. If g is continuous at a and f is contimnons at $g(a)$, then fog is continuous at a too.

* The final point requires the following limit law...

Theorem If $\lim _{x \rightarrow a} g(x)=b$ and if f is continuous at b, then $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(b)$.

Theorem (continuous Building Blocks) The following are continuous on their domains:

1. Rational functions (and polynomials)
2. Root functions
3. trig. and inverse trig. functions
4. exponential and logarithmic functions

Ex Determine where $\ln (1-\sqrt{x})$ is continuous.

* In $(1-\sqrt{x})$ is built up from functions that are continuous on their domains, so $\ln (1-\sqrt{x})$ is continuous on its domain.
* So what is the domain ot $\ln (1-\sqrt{x})$?

Need: $1-\sqrt{x}>0$ and $\sqrt{x} \geqslant 0$

$$
\Rightarrow x \geqslant 0 \text { and } x<1 \text { so } 0 \leqslant x<1
$$

Intermediate Value Theorem

IVT Suppose f is continuous on $[a, b]$ and that N is any number b/w $f(a)$ '? $f(b)$. Then there is at least one value $c \quad b / w$ and b sit. $f(c)=N$.

Ex Does $x^{4}-x-1=0$ have any real solutions?

* can you factor? graph? ... try IVT

$$
\text { * Let } f(x)=x^{4}-x-1 \ldots \text { want ac st. } f(c)=0
$$

Thus, by IVT, there is a c b/w 0 and 2 st.

$$
f(c)=0 .
$$

2.6 Limits at Infinity

Q: What should $\lim _{x \rightarrow \infty} f(x)=L$ mean?
Q: Given the graphs below, how would you answer

$$
\lim _{x \rightarrow \infty} f(x)=?
$$

$$
\text { limit = } 1
$$

GW-07 \#1

GW-07 \# 2
Ex Find the following
(a) $\lim _{x \rightarrow \infty}\left(x^{\infty}+\cos x\right)^{b / 1}=\infty$

(b) $\lim _{x \rightarrow \infty}\left(\frac{y^{0}}{x}+\cos x\right)=D N E$

(0) $\lim _{x \rightarrow 0^{+}} \cos (\underbrace{\frac{1}{\ln \left(1+\frac{1}{x}\right)^{\infty}}}_{1^{\frac{1}{x}}}), \infty=\cos (0)=1$

Algebraic techniques

Ex Find the following Indeterminate!!
(a) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+x+1}{7+5 x^{4}} \cdot \frac{\frac{\infty}{x^{4}}}{1 / x^{4}}=\lim _{x \rightarrow \infty} \frac{\frac{27^{0}}{x}+\frac{y^{2}}{x^{3}}+\frac{1}{x^{4}}}{\frac{z^{7}}{x^{4}}+5}=$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+x+1}{\sqrt{7+5 x^{4}}} \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{2 x+\frac{1}{x}+\frac{1}{x^{2}}}{\sqrt{7+5 x^{4}} \cdot \frac{1}{\sqrt{x^{4}}}}$ C same idea:

$$
\text { denom } \approx \frac{\sqrt{x^{4}}}{n i}
$$

Gw-07 \#3

Q: What did you notice in the se examples? might you be able to anticipate some of the answers?

- please provide evidence of your suggestion.
2.7 Derivatives '. Rates of Change

Tangent lines
The line tangent to a circle at a point P is easy to define...

we now try to define the line tangent to an arbitrary curve $y=f(x)$ at a point $P=(a, f(a))$. We start by looking at
secant lives...

$$
6 W-08 \# 1
$$

GW-08 Deft of tan. (line, \#2
Ex Draw the tam. line to $y=x^{2}+1$ at the point where $x=3$, and find an eq. for the tam. line.

Graph
Tan. line

Answer:

$$
y-10=6(x-3)
$$

OR

$$
\begin{aligned}
& \text { slope: } \\
& m=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
&=\lim _{h \rightarrow 0} \frac{(3+h)^{2}+1-\left(3^{2}+1\right)}{h} \\
&=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{n} \\
&=\lim _{h \rightarrow 0}(6+h)=6
\end{aligned}
$$

$$
y=6(x-3)+10
$$

- point: $(3, f(3))=(3,10)$

$$
G W-08 \quad \# 3
$$

Instant timeous Velocity
Think back to the beginning of the course...
$G W-08$ Def. of velocity, $\# 4$

The derivative of a function
This is the miffing idea of finding slopes of tam. lines, finding velocities,...

GW-09 bet of derivative

Summary
(1) $f^{\prime}(a)$ is the slope of the tam. line to $y=f(x)$ at $x=a$
(2) If $f(x)$ is position at timex, then $f^{\prime}(a)$ is velocity at time a.
position $\xrightarrow{\text { der. }}$ velocity $\xrightarrow{\text { der }}$ acceleration ... in general

Deft If $y=f(x)$, then the (instantaneous) rate of charge of y withrespect tox $a+a$ is $f^{\prime}(a)$.

* why? $\quad f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \leftarrow \operatorname{limit~of~a~verage~}_{\text {rates of change }}$
* Note: units for $f^{\prime}(a)=\frac{\text { units for } f(x)}{\text { units for } x}$

$$
G w-0 q \# 1
$$

2.8 The Derivative Function

Recall: GW-09 Ret. of der. function

Ex Let $f(x)=\frac{1}{x}$.
(1) Find a formula for $f^{\prime}(x)$.
(2) Use your formula to find $f^{\prime}(-2)$ and $f^{\prime}(1)$.
(3) Graph $f(x)$ and $f^{\prime}(x)$
(1)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \frac{(x+h) x}{(x+h) x} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h(x+h) \cdot x} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+h) x} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+h) \times 0}=\frac{-1}{x^{2}}
\end{aligned}
$$

(3)

Q: Does it make sense that $f^{\prime}(x)<0$?
$G W-09 \# 2$

GW-09 Def. differentiability, \#3

Non-differentiability
Ex sketch f and f^{\prime}
(a) $f(x)=|x|$
(b) $f(x)=\sqrt[3]{x}$
(c) $f(x)=\left\{\begin{array}{rl}1 & x \geq 0 \\ -1 & x<0\end{array}\right.$

Graphically, f is NOT differentiable at a if

1. it has a (sharp p) corner at $x=a$
2. it has a vertical tangent line at $x=a$
3. it has a discontinuity at $x=a$

The If f is differentiable at a, then f is continuous at a.

Picture

\& Assure $f^{\prime}(a)$ exists. We want to show $\lim _{x \rightarrow a} f(x)=f(a)$ or equivalently that $\lim _{x \rightarrow a}(f(x)-f(a))=0$. Ob serve,

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x)-f(a)) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot(y-a) \\
& =f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

Notation Let $y=f(x)$.
(1) $\frac{d}{d x}$ means "take the derivative with respect to x "

- $\frac{d}{d x}(f(x))=f^{\prime}(x)$
- $\frac{d}{d x}(y)$ is usually written $\frac{d y}{d x}$
- This, $f^{\prime}(x)=\frac{d y}{d x}$
- $f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}$
(2) Second derivative
- $f^{\prime \prime}$ means $\left(f^{\prime}\right)^{\prime}$
- $\frac{d^{2} y}{d x^{2}}$ means $\frac{d}{d x}\left(\frac{d y}{d x}\right)$
- Thus, $f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}$

