2.1 Tangent + Velocity Problems

GW-01

Q: But, what do we near by the (instantaneous) velocity of an object? Velocity is a rate of change, but at a particular instant, nothing is changing !?

Instantaneous velocity will be defined to be the "limiting value" of the average velocities, i.e.

$$V(i) = \lim_{t \to 1} \frac{h(t) - h(i)}{t - 1}$$
 More later !!

* so, limits are mavoidable!

GW-02

The stope of the tangent line (hence the line itself) will be defined as the "limiting value" of the slopes of the secant lines.

* limits are mavoidable !

2.3 Limit Laws Q: what is $\lim_{x \to 2} \frac{7x^3}{5-x}$? ... well as $x \to 2$, $5-x \to 3$ and $x^3 \to 8$, so $\frac{7x^3}{5-x} \to \frac{56}{3}$... but how done justify this?

Limit Laws Suppose that
$$\lim_{x \to a} P(x) = L$$
 and $\lim_{x \to a} P(x) = M$.
1. and 2. $\lim_{x \to a} \left[P(x) \pm g(x) \right] = \lim_{x \to a} P(x) \pm \lim_{x \to a} P(x) = L \pm M$
3. $\lim_{x \to a} \left[C + P(x) \right] = c \lim_{x \to a} P(x) = c + for convector taut
4. $\lim_{x \to a} \left[F(x) \cdot g(x) \right] = L \cdot M$
5. $\lim_{x \to a} \left[\frac{P(x)}{\partial(x)} \right] = \frac{1}{M} \quad iP \ M \neq 0$.
6. $\lim_{x \to a} (F(x))^n = L^n$
7. $\lim_{x \to a} C = C$
(ottens)
11. $\lim_{x \to a} \int P(x) = \sqrt{\lim_{x \to a} F(x)} = \sqrt{L}$
provided $L > 0$ when niseren.
Ex Use the limit laws to Sind $\lim_{x \to a} \frac{\pi^3}{5-x}$.
 $= \lim_{x \to a} \frac{1}{2} \lim_{x \to a} \sum_{x \to a} \sum_{x \to a} \frac{1}{2} \lim_{x \to a} \sum_{x \to a} \sum$$

Direct Substitution If
$$g$$
 is a rational function
and a is in the domain of g , then $\lim_{x \to a} f(x) = f(a)$.
just plug in
 x so, DS tellows that $\lim_{x \to -1} \frac{x^2-1}{x-1} = \frac{0}{-z} = 0$
 x But, DS does not apply to $\lim_{x \to -1} \frac{x^2-1}{x+1}$. See why?
 Ex Find $\lim_{x \to -1} \frac{x^2-1}{x+1}$.
 x DS does Not apply - it yields \bigcirc Try to manipulat
 $\lim_{x \to -1} \frac{x^2-1}{x+1} = \lim_{x \to -1} (x-1) = -2$
 $\lim_{x \to -1} \frac{x^2-1}{x+1} = \lim_{x \to -1} (x-1) = -2$
 $\lim_{x \to -1} \frac{x^2-1}{x+1} = x + -1$
 $\lim_{x \to -1} \frac{x-1}{x+1} = x - 1$ whenever $x = -1$
 $(x - 1)(x+1) = x - 1$ whenever $x = -1$

Ex Find
$$\lim_{h \to 0} \frac{1}{1+h} - 1$$

* DS yields $\stackrel{\circ}{0}$, so try to manipulate.
 $\lim_{h \to 0} \frac{1}{1+h} - 1$ (1+h) clear
 $\lim_{h \to 0} \frac{1}{h} - 1$ (1+h) $\lim_{h \to 0} \frac{1}{1+h} - 1$ (1+h) $\lim_{h \to 0} \frac{1}{h}$ (1+h) $\lim_{h \to 0} \frac{1}{h}$ (1+h) $\lim_{h \to 0} \frac{1}{h}$

$$= \lim_{n \to 0} \frac{1 - (1+h)}{h(1+h)}$$

denominator ... or combine Stractions in Numerator

limit
ignores
$$y = \lim_{n \to 0} \frac{-h}{h(1+h)}$$

 $y = \lim_{n \to 0} \frac{-1}{1+h} = \boxed{-1}$

f(x) ≤ g(x) ≤ h(x) for all x near a (except possibly at a)
 AND

•
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$$

Hen $\lim_{x \to a} g(x) = L$.

X what to do? DS yields
$$0.\sin(\frac{1}{6})$$
?? simplify??
Try Squeeze The. Note that
 $-1 \le \sin(\frac{1}{x}) \le 1 \implies -x \le x \sin(\frac{1}{x}) \le x^{-1} (x>0)$
Since $\lim_{x \to 0^+} -x = \lim_{x \to 0^+} x = 0$, the Squeeze Then
tells us that $\lim_{x \to 0^+} x \sin(\frac{1}{x}) = 0$.

Theorem (continuity Laws) If \$, g are continuous at a, then so are f+g, f-g, f.g, and $\frac{f}{F}$ provided g(a) =0. If g is continuous at a and f is continuous at g (a), then fog is continuous at a too.

Intermediate Value Reorem

IVT Suppose fis continuous on Ea, b] and that Nisany number b/w f(a) {f(b). Then there is at least one value c b/w a and b s.t. f(c) = N.

Ex Does
$$x^{4}-x-1=0$$
 have any real solutions?
* can you factor? graph? ... try IVT
* Let $f(x) = x^{4}-x-1$... want a c s.t. $f(c) = 0$
IVT ((i) f is continuous everywhere (b/c it is a poly.)
applies!! ((ii) $f(c) = -1 < 0$ $f(z) = 13 > 0$
Thus, by IVT, there is a c $b(w \ 0 \text{ and } 2 \text{ s.t.}$
 $f(c) = 0$.

2.6 Limits at Infinity
Q: What should
$$\lim_{x \to \infty} f(x) = L$$
 mean?
Q: Given the graphs below, how would you answer
 $\lim_{x \to \infty} f(x) = \frac{7}{1}$
(imit=0
(imit=1)
(imit=0
(imit=1)
Gw-07 # 1
Gw-07 # 1
Gw-07 # 2
Ex Find the following
(a) $\lim_{x \to \infty} (x + cosx) = on E$
(b) $\lim_{x \to \infty} (\int_{x}^{\infty} f(csx) = on E$
(c) $\lim_{x \to 0^{+}} cosx(cosx) = 0 NE$
(c) $\lim_{x \to 0^{+}} cosx(cosx) = 0 NE$

Algebraic techniques

Ex Find the following Indeterminate!!
(a)
$$\lim_{x \to \infty} \frac{2x^3 + x + 1}{7 + 5x^4} \cdot \frac{7x^4}{7x^4} = \lim_{x \to \infty} \frac{27 + 12}{7x^2 + x^3} + \frac{17}{x^4} = 0$$

highest power inderson.

(b)
$$\lim_{x \to \infty} \frac{2x^3 + x + 1}{\sqrt{7 + 5x^4}} \frac{1}{x^2} = \lim_{x \to \infty} \frac{2x + \frac{1}{x} + \frac{1}{x^2}}{\sqrt{7 + 5x^4}}$$

C same idea:
denom z $\sqrt{x^4} = x^2$
highest power
 $= \lim_{x \to \infty} \frac{2x + \frac{1}{x} + \frac{1}{x^2}}{\sqrt{7 + 5x^4}}$
 $= \lim_{x \to \infty} \frac{2x + \frac{1}{x} + \frac{1}{x^2}}{\sqrt{7 + 5x^4}}$

Q: what did you notice in these examples? might you be able to anticipate some of the answers? nt vour

2.7 Derivatives ¿Rates of Change

Tangent lines The line tangent to a circle at a point P is easy to define

we now try to define the line tangent to an arbitrary curve y = f(x) at a point P = (a, f(a)). We start by looking at secant lines...

GW-08 # |

GW-09 Det of derivative

2.8 The Derivative Function

Recall:
$$GW - 0q$$
 Det. at der. function

$$E_{X} \text{ Let } f(x) = \frac{1}{x}$$
(D Find a formula for $f'(x)$,
(a) Use your formula to find $f'(-2)$ and $f'(1)$,
(b) $G(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x+h} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x} - \frac{1}{x}$
(c) $f'(x) = \lim_{h \to 0} \frac{1}{x} - \frac{1}{x}$
(c) $f'(x) = -\frac{1}{x}$
(c) $f'(x) = -\frac{1}$

Notation Let
$$y = f(x)$$
.
(1) $\frac{d}{dx}$ means "take the derivative with respect to x"
 $e^{\frac{d}{dx}}(f(x)) = f'(x)$
 $e^{\frac{d}{dx}}(y)$ is usually written $\frac{dy}{dx}$
 $e^{\frac{d}{dx}}(y)$ is usually written $\frac{dy}{dx}$
 $e^{\frac{d}{dx}}(y)$ is usually written $\frac{dy}{dx}$
 $e^{\frac{d}{dx}}(x) = \frac{dy}{dx}$.
 $e^{\frac{d}{dx}}(x) = \frac{dy}{dx}$.
 $e^{\frac{d}{dx}}(x) = \frac{dy}{dx}$.
 $e^{\frac{d}{dx}}(x) = \frac{d^{\frac{d}{dx}}}{dx^{2}}$
 $e^{\frac{d^{\frac{d}{dx}}y}{dx^{2}}}$ means $\frac{d}{dx}(\frac{dy}{dx})$
 $e^{\frac{d^{\frac{d}{dx}}y}{dx^{2}}}$.
Thus, $f''(x) = \frac{d^{\frac{d}{dx}}y}{dx^{2}}$.