4.1 Maximums '̀ Minimums

An important application of calculus is to optimize things, egg. minimize cost or maximize velocity.

WS-19 Def. Abs. Maximin, \#1

$$
w s-19 \quad \# 2,3,4,5
$$

WS-19 Ext. Value Theorem
Question How can we find abs. extrema (if they exist)?

Main idea:
(1) look at local extrema
(2) look at end points

Finding local extrema
What is true about der. at a local max 1 min.

Vocal max: $f^{\prime}(n)=0$
localmin: $f^{\prime}(m) D N E$

WS-20 Local Ext. The, \# 1

$$
\begin{array}{cccc}
- & \text { Ex } & \text { Find critical \#s of } & g(x)=\frac{2}{x^{2}-x-2} \\
\frac{\delta}{\frac{\sigma}{+}} & & \\
\frac{2}{0} & g^{\prime}(x)=\cdots=\frac{2-4 x}{\left(x^{2}-x-2\right)^{2}} & \frac{f^{\prime}(x)=0}{x=1 / 2} & \frac{f^{\prime}(x) \text { ONE }}{x=2,-1 \quad \text { not in domain }} \begin{array}{l}
\text { so not a } \\
\text { writ. \# }
\end{array}
\end{array}
$$

Finding Absolute Extrema
WS-20 Strategy
Ex Find the abs. extra. of $f(x)=2 x^{3}-3 x^{2}-36 x$ on $[0,10]$
(1) Find critical \#s
from
TS $20 \rightarrow f^{\prime}(x)=6 x^{2}-6 x-36$
(2) Test

x	$f(x)$
0	0
10	1340
3	-81

abs. max ot 1340 (when $x=10$) abs. min of -81 (when $x=3$)

WS-20 \#2
Ex Find abs. extr. of $f(x)=3 x^{2 / 3}-x$ on $[-1,8]$
(1) Find crit. \#s

$$
\frac{f^{\prime}(x)=0}{\frac{2}{\sqrt[3]{x}}-1=0 \Rightarrow x=8}
$$

$$
f^{\prime}(x)=2 x^{-1 / 3}-1=\frac{2}{\sqrt[3]{x}}-1
$$

$$
\frac{f^{\prime}(x) \text { DNE }}{x=0}
$$

x	$f(x)$
-1	4
8	4
0	0

abs max of $4 \quad(x=-1,8)$ abs min of $0 \quad(x=0)$

Graph Me!

4.2 Mean Value Theorem
$W S-21 \# 1$

Rolle's Theorem Suppose that f satisfies
(1) f is continuous on $[a, b]$,
hor. tam. live
(2) Ais differentiable on (a, b), and at $x=c$
(3) $f(a)=f(b)$.

Then there is at least one x-value c in (a, b) s.t. $f^{\prime}(c)=0$. pt

If f is constant, $f^{\prime}(c)=0$ for all $\operatorname{cin}(a, b)$.
If f is not constant, f achieves a max or min different than $f(a)$ in (a, b) by EVT. Assume this happens at $x=C$. By Local Extrema Theorem, $f^{\prime}(c)=0$ or $f^{\prime}(c) D N E$, but second is ruled out by hypothesis (2).

Question: what if $f(a) \neq f(b)$... com we say any thing? parallel!

Mean value Theorem Suppose that fortis fie
(1) f is continuous on $[a, b]$, $A N D$
(2) f is differentiable on (a, b).

Then there is at least one x-value c in (a, b) st.
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
\uparrow
instr
of ch
example
You are driving to visit a friend and decide to take the tollway because the speed limit is a pleasant 70 miles per hour. When you enter the tollway around $12: 00 \mathrm{Pm}$, you are given a paper card that you will use to pay when you get off of the tollway. The card records the time and the location where you entered the tollway. After 36 miles, you exit the tollway at 12:30pm. You give your card to the attendant, and you are immediately issued a speeding ticket for $\$ 100$. How can they prove you were speeding?
pt (idea)

$$
\text { Let } h(x)=\underbrace{f(x)-\left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right]}
$$

the dist. b/w f and secant live Now, apply Rolle's The to $h(x)$.

Theorem If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on (a, b).
pt
we wont to show that if $a<u, v<b$ then $f(u)=f(v)$. Now, f is cont. and diff. on $[u, v]$ so by the MVT, there is a $u<c<v$ st.

$$
0=f^{\prime}(c)=\frac{f(v)-f(u)}{v-u}
$$

Thus, $0=f(v)-f(u)$, so $f(u)=f(v) . \quad$.

WS-21 "Same Der. Theorem"
 constant C.
pl
we want to show $f(x)=g(x)+c$, which is the same as showing $f(x)-g(x)=c$. Since $f^{\prime}(x)=\delta^{\prime}(x)$, $(f(x)-g(x))^{\prime}=0$, so by the previous result, $f(x)-g(x)=C$.

$$
\omega s-21 \quad \# 2
$$

4.3 what Does f^{\prime} ? $f^{\prime \prime}$ tell us about f

Increasing / Decreasing E' Concavity
WS-22 Def. * draw pictures on side
$\omega s-22 \# 1,2$
WS-22 Theorem: connect incr/decr/concavity with f', f'"
ws-22 \# 3,4

Finding Increasing/ Decreasing, Concavity, Extrema,! IDs WS-23 Strategy

Ex Let $f(x)=2 x^{3}+3 x^{2}-36 x$. Find intervals of incr, decs., $C U, C D$. Also find local extrema t inf. pts.
(I) $f^{\prime}(x)=6 x^{2}+6 x-36=6\left(x^{2}+x-6\right)=6(x+3)(x-2)$

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& x=-3, x=2 \\
& f^{\prime}(x) \text { DNE }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(-4)=36+ \\
& f^{\prime}(0)=-36 \\
& f^{\prime}(3)=36
\end{aligned}
$$

incr.: $(-\infty,-3),(2, \infty)$
deer.: $(-3,2)$
local max : 81 when $x=-3$
local min: -44 when $x=2$

II

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x+6=6(2 x+1) \\
& \frac{f^{\prime \prime}(x)=0}{x=-1 / 2} \\
& f^{\prime \prime} D N E
\end{aligned}
$$

Cu: $(-1 / 2, \infty)$
I.P. $(-1 / 2,-37.5)$
$C D:(-\infty,-1 / 2)$

Ex Find all local extrema and inf. pts of

$$
f(x)=x^{2 / 3}(6-x)^{1 / 3}
$$

Note that

$$
f^{\prime}(x)=\frac{4-x}{x^{1 / 3}(6-x)^{2 / 3}} \quad f^{\prime \prime}(x)=\frac{-8}{x^{4 / 3}(6-x)^{5 / 3}}
$$

(I)

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& 4-x=0 \\
& x=4 \\
& \frac{f^{\prime}(x) \text { DNE }}{x^{1 / 3}=0 \text { or }(G-x)^{2 / 3}=0} \\
& x=0 \quad x=6
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(-1) \frac{(t)}{(-)(t)}=+ \\
& f^{\prime}(1) \frac{(t)}{(t)(t)}=+ \\
& f^{\prime}\left(5 \quad \frac{(-1)}{(t)(t)}=-\right. \\
& f^{\prime}(7) \frac{(-)}{(4)(t)}=+
\end{aligned}
$$

local max of $f(4)=2^{5 / 3} \approx 3.2$ when $x=4$
local min of $f(6)=0$ when $x=6$

$$
\begin{aligned}
& \text { II } \\
& f^{\prime \prime} \xrightarrow{\substack{r \\
-1}} \underset{\substack{0 \\
0}}{\sim} \\
& f^{\prime \prime}(-1) \quad \frac{(-)}{(t)(-1)}=- \\
& \text { One I.P.: }(6,0) \quad f^{\prime \prime}(1) \frac{(-1)}{(-1)(+)}=- \\
& f^{\prime \prime}(7) \frac{(-)}{(t)(-)}=+
\end{aligned}
$$

For frm:

$$
G W-23 \quad \# 1
$$

Recall:
(1) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=4$
(2) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x}{-x^{2}+4 x-1}=\lim _{x \rightarrow \infty} \frac{3 x^{2}-x}{-x^{2}+4 x-1} \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3-\frac{1}{x}}{-1+\frac{4}{x^{2}}-\frac{1}{x^{2}}}{ }^{0}=-3$

But, what about...
(3) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$ OR $\lim _{x \rightarrow \infty} \frac{\ln x}{x-1} \frac{\infty}{\infty}$
$\frac{O}{0}$ and $\frac{\infty}{\infty}$ represent limits and are called indeterminate forms.

GW-24 L'Hôpital's Rule
Ex compute
(1) $\lim _{x \rightarrow 1} \frac{\ln x}{x-1} \stackrel{\circ}{\circ}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{1}=1$
(2) $\lim _{x \rightarrow \infty} \frac{\ln x \frac{\infty}{\infty}}{x-1}=\lim _{H R} \frac{\frac{1}{x}}{1}=0$
(3) $\lim _{x \rightarrow \infty} \frac{x+\sin x^{\frac{\infty}{\infty}}}{x}=\lim _{x \rightarrow \infty} \frac{1+\cos x}{1}$ DNE so stantover!! HR does NoT apply

$$
\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}=\lim _{x \rightarrow \infty} 1+\frac{\sin x 7^{0}}{x}=1
$$

(4) $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-1-t / 2}{t^{2}}=\lim _{z \rightarrow 0} \frac{\frac{1}{2}(1+t)^{-1 / 2}-\frac{1}{2}}{2 t}=\lim _{H R \rightarrow 0}^{0} \frac{-\frac{1}{4}(1+t)^{-3 / 2}}{2}=-\frac{1}{8}$
pt of $H R$ (idea for $\frac{0}{0}$)

* assume f^{\prime} and g^{\prime} are continuous

Now,

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{f(x)}{\delta(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)}{g^{\prime}(a)}=\underbrace{}_{x \rightarrow a} \frac{f^{\prime}(x)}{f^{\prime}(x)} \\
& \text { terminconfincoons } \\
& \text { Product a }
\end{aligned}
$$

Indeterminate Products
What about $\lim _{x \rightarrow 0^{+}} x \ln x$? $O \cdot(-\infty)$?... indeterminate!

* $0 . \infty$ includes $\pm \infty$ an indetermiate form!

Strategy
If $\lim _{x \rightarrow a} f(x) g(x)$ has the form $0 . \infty$, rewrite limit a s

Ex compute

$$
0 \cdot(-\infty)
$$

(1) $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0$
(2)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{-3} e^{x^{2}} & =\lim _{x \rightarrow \infty} \frac{e^{x^{2} \frac{\infty}{\infty}}}{x^{3}}=\lim _{x \rightarrow \infty} \frac{e^{x^{2}} \cdot 2 x}{3 x^{2}} \\
& =\lim _{x \rightarrow \infty} \frac{2 e^{x^{2} \frac{\infty}{\infty}}}{3 x}=\lim _{x \rightarrow \infty} \frac{2 e^{x^{2}} \cdot 2 x}{3}=\infty
\end{aligned}
$$

-
$\frac{5}{5}$
-
+
0

$$
\lim _{x \rightarrow \infty} x \ln \left(\frac{x-1}{x+1}\right)
$$

Indeterminate Differences
what about $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$? $\infty-\infty$

* $\infty-\infty$ is am indeterminate form... but not $\infty+\infty$, why?

Strategy
combine with common denominator

Ex compute

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right) & =\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1-x}{x\left(e^{x}-1\right)} \frac{0}{0} \\
& =\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x e^{x}+e^{x}-1} \frac{0}{0} \\
& =\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x e^{x}+e^{x}+e^{x}} \\
& =\frac{1}{2}
\end{aligned}
$$

Indeteminate Powers
what about $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$? $\quad 1^{\infty} \ldots$ indeterminate.

* $1^{\infty}, 0^{0}, \infty^{0}$ are indeterminate... but ∞^{∞} is not, why?

Strategy
use logarithms. let's see this by example.

Ex Compute
(1) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
(1) Take in

$$
\begin{aligned}
& \text { Take } \ln \\
& \begin{aligned}
\lim _{x \rightarrow \infty} \ln \left(\left(1+\frac{1}{x}\right)^{x}\right) & =\lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{x}\right) \infty \cdot 0 \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{1 / x} \frac{0}{0} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{1}{x}} \cdot\left(-\frac{1}{x^{2}}\right)}{\left(-\frac{1}{x^{2}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1+\frac{1}{x}}=1
\end{aligned}
\end{aligned}
$$

(2) Exponentiate

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \ln \left(\left(1+\frac{1}{x}\right)^{x}\right)=1 \Rightarrow \lim _{x \rightarrow \infty} e^{\ln \left(\left(1+\frac{1}{x}\right)^{x}\right)}=e^{1} \\
& \Longrightarrow \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} x^{x}
$$

$$
G W-24
$$

\# 2
4.5 curve sketching

Ex Find the horizontal asymptotes of $f(x)=\sqrt{x} e^{-x}$

* need to find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
- $\lim _{x \rightarrow \infty} \sqrt{x} e^{-x}=\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{e^{x}} \frac{\infty}{\infty}=\lim _{x \rightarrow \infty} \frac{\frac{1}{2} x^{-1 / 2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{x} e^{x}}=0$
$-\lim _{x \rightarrow-\infty} \sqrt{x} e^{-x}$ not defined for $x<0$ so DNE

Thus, there is on horizontal asymptote: $y=0$

Ex Sketch the graph at $f(x)=\sqrt{x} e^{-x}$

Domain: $x \geqslant 0$
Intercepts:

$$
\begin{aligned}
& \text { septs: } \\
& y \text {-int: } y=0 e^{0} \Longrightarrow y=0 \\
& x \text {-int: } 0=\sqrt{x} e^{-x} \Longrightarrow x=0
\end{aligned}
$$

Asymptotes:
vert: none
nor: check $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$
$y=0$ see previous example.

Inc./Dec. / Local Extrema
Note that: $f^{\prime}(x)=e^{-x}\left(\frac{1-2 x}{2 \sqrt{x}}\right)$

$$
\underset{x=1 / 2}{f^{\prime}(x)=0} \quad \frac{f^{\prime}(x) D N E}{x \leq 0} \quad \stackrel{f^{\prime}}{\substack{f \\ 0}}
$$

local max : $\left(\frac{1}{2}, f\left(\frac{1}{2}\right)\right) \approx\left(\frac{1}{2}, 0.43\right)$

Concavity I IP
Note that $f^{\prime \prime}(x)=e^{-x}\left(\frac{-1-4 x+4 x^{2}}{4 x^{3 / 2}}\right)$

$$
\begin{aligned}
& \frac{f^{\prime \prime}(x)=0}{x \leq \frac{1 \pm \sqrt{2}}{2}} \quad \frac{f^{\prime \prime}(x) D N E}{x \leq 0} \\
& \approx-0.2,1.2 \\
& \approx \text { not in domain }
\end{aligned}
$$

$$
\text { I.P. } \approx(1.2,0.41)
$$

The sketch

Ex Sketch the graph at $y=\frac{(x-4)^{2}}{x^{2}-4}$.
vote: $f^{\prime}(x)=\frac{8(x-4)(x-1)}{\left(x^{2}-4\right)^{2}}$

$$
f^{\prime \prime}(x)=-\frac{8\left(2 x^{3}-15 x^{2}+24 x-20\right)}{\left(x^{2}-4\right)^{3}}
$$

4.7 Optimization

Ex A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river; no fence is needed along the river. What are the dimensions of the field that has the largest area?
(1) Picture
(2) what to optimize? Constraints?

A is area

Maximize Area
Take $\left\{\begin{array}{l}\text { constraints amount of fencing, }\end{array}\right.$ dimensions non-neg.
maximize $A=l \cdot h$
constraints $l+2 h=2400 ; l, h \geqslant 0$
(3) Convert to function of one variable

$$
\begin{aligned}
l=2400-2 h & \Longrightarrow A=(2400-24) h \\
& \Rightarrow A(h)=2400 h-2 h^{2}, \quad 0 \leqslant h \leqslant 1200
\end{aligned}
$$

$$
\text { * Note: } A=0 \text { at extremes }
$$

(4) Optimize

$$
\begin{array}{lll|l}
A^{\prime}(h)=2400-4 h & c \neq 600 & A(600)=720000 \\
A^{\prime}(h)=0 \\
2400=4 h & \quad A^{\prime}(h) D N E
\end{array} \quad\left\{\begin{array}{cc}
0 & A(0)=0 \\
1200 & A(1200)=0
\end{array}\right.
$$

$$
h=600
$$

max area when

$$
\begin{aligned}
& h=600 \\
& l=1200
\end{aligned}
$$

WS-25 \#1,\#2 (see next page)

Author 1 \qquad

Author 2 \qquad
25 - Optimization
Author 3 \qquad

1. A large storage crate, with an open top, is to be constructed. The base needs to be a square. Material for the base costs $\$ 10$ per square meter, and material for the sides costs $\$ 6$ per square meter. If there is $\$ 100$ available to spend on the crate, what is the greatest volume of crate that can be built?
(1) Picture
(2) what to optimize? Constraints?

V is volume

Take $\left\{\begin{array}{l}\text { maximize Volume } \\ \text { constraints cost, lengths ore } \\ \text { nonnegative }\end{array}\right.$
maximize

$$
V=x^{2} \cdot h
$$

constraints

$$
\begin{aligned}
& 100=10 \cdot x^{2}+4 \cdot 6 \cdot x h \\
& * \quad 100=10 x^{2}+24 \times h \\
& * \text { Also, } x, h \geqslant 0
\end{aligned}
$$

(3) Convert to function of one variable

$$
\begin{aligned}
\frac{100-10 x^{2}}{24 x}=h & \Rightarrow V=x^{2} \frac{100-10 x^{2}}{24 x}=\frac{x}{24}\left(100-10 x^{2}\right) \\
& \Longrightarrow V(x)=\frac{100}{24} \cdot x-\frac{10}{24} x^{3}, 0 \leq x \leq \sqrt{10}
\end{aligned}
$$

$h=0$
(4) Optimize

* note $V=0$ at both extremes.

$$
\begin{aligned}
& V^{\prime}(x)=\frac{100}{24}-\frac{10}{8} x^{2} \\
& \frac{V^{\prime}(x)=0}{\frac{100}{24}=\frac{10}{8} x^{2}} \\
& \frac{10}{3}=x^{\prime}(x) \text { never } \\
& x=\sqrt{\frac{10}{3},-\sqrt{\frac{10}{3}}}
\end{aligned}
$$

c. $\# \rightarrow$| x | $V(x)$ |
| :---: | :--- |
| esp. | $\left\{\begin{array}{cc}0 & V\left(\sqrt{\frac{10}{3}}\right.\end{array}\right) \approx 5.1$ |
| $\sqrt{10}$ | $V(\sqrt{10})=0$ |

\max volume is $\approx 5.1 \mathrm{~m}^{3}$
2. A large storage crate, with an open top, is to be constructed. The length of the base needs to be twice the width of the base and the volume must be $10 \mathrm{~m}^{3}$. Material for the base costs $\$ 10$ per square meter, and material for the sides costs $\$ 6$ per square meter. What is the cost of the materials for the cheapest such container.
(1) Picture
(2) what to optimize? Constraints?

V is volume

Takel $\left\{\begin{array}{l}\text { minimize cost } \\ \text { constraints volume, dimensions }\end{array}\right.$
minimize

$$
c=10\left(2 \omega^{2}\right)+2 \cdot 6 \cdot \omega h+2 \cdot 6 \cdot 2 \omega h
$$

* $C=20 w^{2}+36 w h$
constraints
$* 10=2 \omega^{2} h$
* Also, $w, h>0 \quad$ not $w, h \geqslant 0 \quad b / c$.
(3) Convert to function of one variable

$$
h=\frac{5}{\omega^{2}} \Rightarrow C=20 \omega^{2}+36 \omega\left(\frac{5}{\omega^{2}}\right) \Rightarrow C(\omega)=20 \omega^{2}+\frac{180}{\omega}, 0<\omega<\infty
$$

(4) Optimize

$$
C^{\prime}(w)=40 w-\frac{180}{w^{2}}
$$

$$
\begin{aligned}
& c^{\prime}(\omega)=0 \\
& 40 \omega=\frac{180}{\omega^{2}} \\
& \omega^{3}=\frac{9}{2} \\
& \omega=\sqrt[3]{9 / 2} \approx 1.65
\end{aligned}
$$

c. $\forall \rightarrow$| ω | $C(\omega)$ |
| :--- | :--- |
| $\sqrt[3]{\frac{9}{2}}$ | $c\left(\sqrt[3]{\frac{9}{2}}\right) \approx 163.54$ |
| 0 | $\lim _{\omega \rightarrow 0} C(\omega)=0+\infty=\infty$ |
| ∞ | $\lim _{\omega \rightarrow \infty} C(\omega)=\infty+0=\infty$ |

we haven't seen this be fore... use limits min cost is $\approx \$ 163.54$

