5.1 Area! Distance

Q: what is the area of a circle of radius 3 cm ? ... units?

$$
9 \pi \mathrm{~cm}^{2} \text { \& squaremits }
$$

... area is defined in terms of squares ...or rectangles. ... so how do we find (ordefine') the ore a of other shapes?
WS-26 \#1 (see next page)
L_{n}, R_{n}, and M_{n}
These are specific ways to estimate area using n rectangles of equal width. The difference is in how the height is chosen.

(n

widthot each rectangle $\Delta x=\frac{b-a}{n}$ width $\Delta x=\frac{b-a}{n}$
height use left -hand ep. height useright-hand ep height use midpoint
Ex In the middle picture above, there are 6 rect., so

$$
\begin{aligned}
\text { Area } \approx R_{6} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{5}\right) \Delta x+f\left(x_{6}\right) \Delta x \\
& =\left(f\left(x_{1}\right)+\cdots+f\left(x_{6}\right)\right) \frac{b-a}{n}
\end{aligned}
$$

WS-26 \#2 (see next page)
\qquad
Author 2 \qquad

Author 3

\qquad

1. The graph of $f(x)=4-x^{2}$ is below. Let A be the area under $f(x)$ from $x=0$ to $x=2$.

(a) Give your best estimate of the area A that you can. Make sure to explain your answer.

Be creative, but explain.
(b) Was your estimate an over or underestimate (or are you not sure)?
Try to figure itout.
(c) Compute the area in the 2 large rectangles. This estimate of A is called L_{2}.

$$
L_{2}=h_{1} \cdot w+h_{2} \cdot w=4 \cdot 1+3 \cdot 1=7
$$

(d) Is L_{2} an over or underestimate (or not sure)? Why?
over - too much area

(e) Compute the area in the 4 large rectangles. This estimate of A is called L_{4}.

$$
\begin{aligned}
L_{4} & =4 \cdot 0.5+3.75 \cdot 0.5+3 \cdot 0.5+1.75 .0 .5 \\
& =6.25
\end{aligned}
$$

(f) Is L_{4} an over or underestimate (or not sure)? Why?

```
over - too much area
```


(g) Repeat for these 4 rectangles. This is R_{4}. (Do you see where the $4^{\text {th }}$ one is?)

$$
R_{4}=(3.75+3+1.75+0) \cdot 0.5=4.25
$$

(h) Is R_{4} an over or underestimate (or not sure)?

under

(i) Repeat for these 4 rectangles. This is M_{4}. To find the heights, use the fact that $f(x)=4-x^{2}$.

$$
\begin{aligned}
M_{4} & =\left[\left(4-.25^{2}\right)+\left(4-.75^{2}\right)+\left(4-1.25^{2}\right)+\left(4-1.75^{2}\right)\right] \cdot 0.5 \\
& =5.375
\end{aligned}
$$

(j) Is M_{4} an over or underestimate (or not sure)?
hard totell... imagine rotating tops of rectangles into tangent lines. ... Same area, and now, clearly, over est.
(i) Which do you think is the best estimate of A ? How could you get a better estimate? probably M_{4}... but may be the one you had in (a).

$$
\text { * final guesses on actual area?... it... is... } 5 \frac{1}{3}
$$

2. The graph of $f(x)=\cos x$ is below. Let A be the area under $\cos (x)$ from $x=-\frac{\pi}{2}$ to $x=0$.

(a) Estimate A using R_{3}, and draw the associted rectangles.

$$
\begin{aligned}
R_{3} & =(\cos (-\pi / 2)+\cos (-\pi / 3)+\cos (-\pi / 6)) \cdot \frac{\pi}{6} \\
& =\left(1+\frac{\sqrt{3}}{2}+\frac{1}{2}\right) \cdot \frac{\pi}{6}=\frac{(3+\sqrt{3}) \pi}{12} \approx 1.24
\end{aligned}
$$

(b) Is R_{3} an over or underestimate (or not sure)?

$$
\begin{aligned}
& \text { Over! } \\
& \text { * any guess for the actual area? } \\
& \text {... maybe some thing with } \pi \text { ? } \\
& 2 \ldots \text { it... is... (1) }
\end{aligned}
$$

Definition of Area
In the previous problem, did the area actually equal R_{3} ? would it have equaled R_{10} ? R_{1000} ?

Deft Let f be any continuous function that is non negative on $[a, b]$. The area A of the region between f and the x-axis, from $x=a$ to $x=b$, is

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right) \Delta x
$$

where x_{i} is the right-hand ep. of $i^{\text {th }}$. subinterval and $\Delta x=\frac{b-a}{n}$

* Also, $A=\lim _{n \rightarrow \infty} L_{n}, A=\lim _{n \rightarrow \infty} M_{n}$, and others too!

Summation Notation
By example...
$\underset{\operatorname{add}}{\text { add }} \sum_{i=2}^{7} i^{2}=2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{3}$

Ex Expand each of the following and simplify.
(a) $\sum_{i=-1}^{1} \cos \left(\frac{\pi \cdot i}{4}\right)=\cos \left(-\frac{\pi}{4}\right)+\cos (0)+\cos \left(\frac{\pi}{4}\right)=1+\sqrt{2}$
(b) $\sum_{i=0}^{3} \frac{2 x}{1+(i-1)^{2}}=\frac{2 x}{2}+\frac{2 x}{1}+\frac{2 x}{2}+\frac{2 x}{1+4}=4 x+\frac{2 x}{5}=\frac{22 x}{5}$

Ex write in summation notation.

$$
2 x^{3}+3 x^{4}+4 x^{5}+5 x^{6}
$$

... think... many possibilities like $\sum_{i=2}^{5} i x^{i+1}$

Back to area
So, returning to our area definition.

$$
\begin{aligned}
A & =\lim _{x \rightarrow \infty} R_{n} \\
& =\lim _{x \rightarrow \infty}\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)\right] \Delta x \\
& =\lim _{x \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
\end{aligned}
$$

5.2 Definite Integral

Recall:

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x\right)
$$

this is important! let's give it a name.

* where x_{i} is right-hand ep. of $i^{\text {th }}$ sub. int.
and $\Delta x=\frac{b-a}{n}$

Def Suppose f is defined on $[a, b]$. If

$$
\lim _{x \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

exists and is always the same for all possible choices of sample points x_{i} (ie. $R_{n}, L_{n}, M_{n}, \ldots$) the we say f is integrable on $[a, b]$, and we write

Theorem If f is continuous or has only a f inite number of jump discontinuities on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \text { exists }
$$

i.e. f is integrable on $[a, b]$.

Computing $\int_{a}^{b} f(x) d x$ Geometrically

* $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ which is how we defined the area under f... when f was positive.
* If f becomes negative, we get "negative area"

Theorem $\int_{a}^{b} f(x) d x$ is the net area between f and the x-axis. That is

$$
\int_{a}^{b} f(x) d x=\binom{\text { total area }}{\text { above } x \text {-axis }}-\binom{\text { total area }}{\text { below } x-a x i s}
$$

For example, if...

$$
\int_{a}^{b} f(x) d x=A_{1}+A_{3}-A_{2}
$$

WS-27 $\# 1,2,3$ (se enext page)
\qquad
Author 2 \qquad

27 - Definite Integral

\qquad

Theorem: Evaluating Definite Integrals Geometrically

$$
\int_{a}^{b} f(x) d x=\binom{\text { total area under } f \text { and }}{\text { above the } x \text {-axis }}-\binom{\text { total area above } f \text { and }}{\text { below the } x \text {-axis }}
$$

1. Graph $f(x)=x-1$ over $[-1,2]$, and evaluate $\int_{-1}^{2}(x-1) d x$ by interpreting it as (net) area.

$$
\int_{-1}^{2}(x-1) d x=\frac{1}{2}-2=-\frac{3}{2}
$$

2. Graph $f(x)=\sqrt{4-x^{2}}$ over $[-2,2]$, and evaluate $\int_{-2}^{2} \sqrt{4-x^{2}} d x$ by interpreting it as (net) area.

$$
\int_{-2}^{2} \sqrt{4-x^{2}} d x=\frac{1}{2} \cdot \pi\left(2^{2}\right)=2 \pi
$$

3. Graph $f(x)=\sin x$ over $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x d x$ by interpreting it as (net) area.

$$
\begin{aligned}
& \int_{-\pi / 2}^{\pi / 2} \sin x d x=0 \\
& * \text { but, what about } \int_{0}^{\pi / 2} \sin x d x ? \\
& 1 \quad . . \text { much harder! }
\end{aligned}
$$

Properties of the Definite Integral

Notational
(a) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
why: $\Delta x=\frac{b-a}{n} \quad \Delta x=\frac{a-b}{n}$
(b) $\int_{a}^{a} f(x) d x=0$
why: Oared

Algebraic
(1) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
why: integrand area is c-tines larger
(2) $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
why: area "under" f stacked on top of area "under" g

This one is
very
useful! (4) $\quad \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
why

(5) If $f(x) \geqslant g(x)$ for $a \leqslant x \leqslant b$, then $\int_{a}^{b} f(x) d x \leqslant \int_{a}^{b} g(x) d x$. "we cam integrate inequalities"

Ex If $\int_{-3}^{7} f(x) d x=4$ and $\int_{1}^{7} f(x) d x=9$, find $\int_{-3}^{1} 7 f(x) d x$.

$$
\begin{aligned}
\frac{\int_{-3}^{7} f(x) d x}{4}=\int_{-3}^{1} f(x) d x+\int_{1}^{7} f(x) d x & \Rightarrow \int_{-3}^{1} f(x) d x=-5 \\
9 & \Rightarrow \int_{-3}^{1} 7 \cdot f(x) d x=7 \int_{-3}^{1} f(x) d x=-35
\end{aligned}
$$

Computing $\int_{a}^{b} f(x) d x$ Algebraically
Suppose f is integrable on $[a, b]$.
Remember: this is implied by

Then, by our definition continuity

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\lim _{n \rightarrow \infty} R_{n}\left(\text { or } L_{n}, M_{n} \ldots\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
\end{aligned}
$$

* where x_{i} is the right-hand endpt. of $i^{\text {th }}$ subinterval and $\Delta x=\frac{b-a}{n}$

Let's develop a formula for x_{i}

$$
\begin{aligned}
x_{1}= & a+\Delta x \\
x_{2} & =a+2 \Delta x \\
x_{3}= & a+3 \Delta x \\
& \vdots \\
x_{i}= & a+i \Delta x
\end{aligned}
$$

Thm If f is integrable, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) d x
$$

where

$$
\begin{aligned}
& \text { - } \Delta x=\frac{b-a}{n} \\
& \text { - } x_{i}=a+i\left(\frac{b-a}{n}\right)
\end{aligned}
$$

Ex Consider $\int_{0}^{3}\left(x^{3}-6 x\right) d x$.
(a) Draw the area represented by the integral.

(b) Estimate the integral using R_{3}

$$
\begin{aligned}
\int_{0}^{3}\left(x^{3}-6 x\right) d x \approx R_{3} & =\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right) \Delta x \\
& =(f(1)+f(2)+f(3)) \cdot 1 \\
& =(-5-4+9) \\
& =0 \quad \begin{array}{l}
\text { hmm... that doesn't } \\
\\
\\
\text { seem like aver y good } \\
\text { estimate }
\end{array}
\end{aligned}
$$

(c) Write the integral as a limit of Riemann sums.

$$
\begin{array}{rlrl}
\int_{0}^{3}\left(x^{3}-6 x\right) d x & =\lim _{n \rightarrow \infty} \mathbb{R}_{n} & \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x & \Delta x=\frac{b-a}{n}=\frac{3}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{3 i}{n}\right) \cdot \frac{3}{n} & & =0+i g x \\
& =\frac{3}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{3}-6\left(\frac{3 i}{n}\right)\right] \cdot \frac{3}{n}
\end{array}
$$

(d) Compute the integral!

$$
\int_{0}^{3}\left(x^{3}-6 x\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{3}-6\left(\frac{3 i}{n}\right)\right] \cdot \frac{3}{n}
$$

Let's first simplify the sum.

$$
\begin{aligned}
\sum_{i=1}^{n}\left[\left(\frac{3 i}{n}\right)^{3}-6\left(\frac{3 i}{n}\right)\right] \cdot \frac{3}{n} & =\sum_{i=1}^{n}\left[\frac{27 i^{3}}{n^{3}}-\frac{18 i}{n}\right] \cdot \frac{3}{n} \\
& =\sum_{i=1}^{n}\left[\frac{81}{n^{4}} i^{3}-\frac{54}{n^{2}} i\right] \text { see below } \\
& =\sum_{i=1}^{n} \frac{81}{n^{4}} i^{3}-\sum_{i=1}^{n} \frac{54}{n^{2}} i \quad \text { see below } \\
& =\frac{81}{n^{4}} \sum_{i=1}^{n} i^{3}-\frac{54}{n^{2}} \sum_{i=1}^{n} i \text { s } \\
& =\frac{81}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}-\frac{54}{n^{2}}\left[\frac{n(n+1)}{2}\right] \\
& =\frac{81}{2} \frac{(n+1)^{2}}{n^{2}}-27\left(\frac{n+1}{n}\right)
\end{aligned}
$$

$$
\begin{array}{rl|l}
\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) & =\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\cdots+\left(a_{n}-b_{n}\right) \\
& =\left(a_{1}+a_{2}+\cdots+a_{n}\right)-\left(b_{1}+b_{2}+\cdots+b_{n}\right) &
\end{array} \quad \begin{aligned}
\sum_{i=1}^{n} c a_{i} & =c a_{1}+c a_{2}+\cdots+c a_{n} \\
& =c\left(a_{1}+a_{2}+\cdots+a_{n}\right) \\
& =\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}
\end{aligned} \quad \begin{gathered}
i=1
\end{gathered}
$$

$$
\sum_{i=1}^{n} i=1+2+\cdots+n=\text { (think) }=\frac{n(n+1)}{2}
$$

Also, from book
hmm... Think like Gauss

$$
+\frac{\begin{array}{l}
1+2+\cdots+(n-1)+n \\
n+(n-1)+\cdots+2+1
\end{array}}{(n+1)+\cdots+(n+1)+(n+1)} \text { (no) }
$$

Now we take the limit.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\frac{0}{0} 1\right. \\
& 2\left.\frac{(n+1)^{2}}{n^{2}}-27\left(\frac{n+1}{n}\right)\right]
\end{aligned}=\lim _{n \rightarrow \infty}\left[\frac{81}{2}\left(1+\frac{1}{n}\right)^{0}-27\left(1+\frac{1}{n}\right)^{0}\right]
$$

WS-27 \#4 (see two pages ahead in notes)

Distance from velocity

Recall that for constant velocity: distance $=($ velocity $)$. (time)
Now suppose velocity is NOT constant. Suppose a car is moving with a velocity of $V(t)$.

How could we determine the distance traveled from time O to time 5 min?

* we could pretend the velocity was constant, say $40 \mathrm{ft} / \mathrm{s}$ Then,

$$
\text { dis. } \approx 40 \cdot 5=200 \mathrm{ft}
$$

* better, we could just pretend the velocity was constant over each one second interval

$$
\begin{aligned}
\text { dis. } & \approx v(1) \cdot 1+v(2) 1+v(3) \cdot 1+v(4) \cdot 1+v(5) \cdot 1 \\
& \approx 20+45+52+52+50
\end{aligned}
$$

$$
\approx 219 \mathrm{ft}
$$

* even better, we could work with smaller tine intervals

$$
\text { dis. } \approx\left[v\left(t_{1}\right)+v\left(t_{2}\right)+\cdots+v\left(t_{n}\right)\right] \Delta t^{\text {a for } \Delta t \text { small }}
$$

This leads to a theorem.
this accomts for negative velocity - think of a spring.
Theorem The (net) dispacement, D, of an object moving with velocity $v(t)$ from time $t=a$ to $t=b$ is

$$
D=\int_{a}^{b} v(t) d t=\lim _{n \rightarrow \infty} R_{n}
$$

Summary
(1) $\int_{a}^{b} f(x) d x$ computes the net area bow f and the x-axis from $x=a$ to $x=b$.
(2) If $f(x)$ is velocity at time x, then $\int_{a}^{b} f(x) d x$ gives displacement.

WS-27 \#5 (see next page)

Theorem: Evaluating Definite Integrals Algebraically

If f is integrable, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x\right)
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i\left(\frac{b-a}{n}\right)$.
4. Consider the integral $\int_{1}^{3} \frac{1}{1+x^{2}} d x$.
(a) Estimate the integral using R_{4} (4 subintervals with right-hand endpoints as sample points).

(b) Express the integral as a limit of Riemann sums. (But, do not compute it.)

$$
\int_{1}^{3} \frac{1}{1+x^{2}} d x=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n}\left(\frac{1}{1+\left(1+\frac{i}{2}\right)^{2}} \cdot \frac{1}{2}\right)\right)
$$

Theorem: Evaluating Definite Integrals Algebraically

If $v(t)$ gives the velocity of of an object at time t, then the (net) displacement, D, of the object from $t=a$ to $t=b$ is

$$
D=\int_{a}^{b} v(t) d t
$$

5. Suppose that the velocity of a space shuttle t seconds after takeoff is modeled by $v(t)=0.125 t^{2}-4.8 t$, in m / s. This model is only valid in the first 124 seconds while the rocket boosters are assisting.
(a) What is the velocity of the shuttle after 124 seconds?

$$
v(124)=1326.8 \mathrm{~m} / \mathrm{s}
$$

(b) Write down (but don't compute) a definite integral that expresses the distance traveled by the rocket in the first 124 seconds.

$$
D=\int_{0}^{124}\left(0.125 t^{2}-4.8 t\right) d t
$$

(c) Estimate the distance traveled by the rocket in the first 124 seconds using R_{4} (and a calculator).

$$
\begin{aligned}
& R_{4}=(v(31)+v(62)+v(93)+v(124)) \cdot 31\left\{\begin{array}{c}
\text { Actual distance } \\
\text { is } \approx 42 \mathrm{~km} \\
\\
\end{array}=65588.25 \mathrm{~m}\right. \\
& \ldots \text { in } 124 \mathrm{sec} \ldots \\
& \text { wow! }
\end{aligned}
$$

4.9,5.3,5.4 FTC and Antiderivatives

Q: what is $\int_{0}^{3} x d x$? $\frac{{ }^{3} \text { 遮 }}{3} \quad \int_{0}^{3} x d x=\frac{9}{2}$
Q: what is $\int_{0}^{\pi} \sin x d x$? $\quad \int_{\pi}^{\lim x} \quad \int_{0}^{\pi} \sin x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\ldots$
this is a lot of work! can we speed this up?

Fundamental Theorem of Calculus (Par t2)
If f is continuous on $[a, b]$ and F is any antiderivative for f, i.e. $F^{\prime}=f$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Th wow! ! ... and why?
Ex Compute $\int_{0}^{\pi} \sin x d x$.
(1) Need anantider. for $\sin x$.

$$
\cdots(\cos x)^{\prime}=-\sin x \ldots(-\cos x)^{\prime}=\sin x
$$

so we use $F(x)=-\cos x$
(2)

$$
\int_{0}^{\pi} \sin x d x=F(\pi)-F(0)=[-\cos (\pi)]-[-\cos (0)]=2
$$

We now pause to practice antiderivatives.

Antiderivatives

Ex Find an antiderivative for $f(x)=x^{2}$. How many canyoufind?

$$
\frac{1}{3} x^{3}, \frac{1}{3} x^{3}+1, \frac{1}{3} x^{3}+\pi, \ldots
$$

GW-28 All...but pause for indef. integral and antider. of powers.

国 $\int f(x) d x$ represents a family of functions.

- $\int_{a}^{b} f(x) d x$ is a number, representing an area.

Properties of Indef. Integrals

$$
\begin{aligned}
& \text { - } \int c f(x) d x=c \int f(x) d x \\
& \text { - } \int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x
\end{aligned}
$$

Back to FTC-2

$$
\text { Gw-29 } \# 1,2
$$

Question: To use FTC-2, we need to find antiderivatives. Can this al ways be done?

Thinking out lond... antider. are connected to definite integrals... def. integrals are connected to area... so let's try returning to area...

$$
G w-29 * 3
$$

Fundamental Theorem ot Calculus (Part 1)
If f is continuous on $[a, b]$, then the area function

$$
A(x)=\int_{a}^{x} f(t) d t
$$

is an antiderivative for f on (a, b). Thetis, $A^{\prime}(x)=f(x)$.

More is true...
(1) If c is any number in $[a, b]$, then

$$
\frac{d}{d x}\left[\int_{c}^{x} f(t) d t\right]=f(x)
$$

(2) More generally,

$$
\frac{d}{d x}\left[\int_{c}^{h(x)} f(t) d t\right]=f(h(x)) \cdot h^{\prime}(x)
$$

Ex If $g(x)=\int_{5}^{x^{3}} \sin (t) d t$, then $\sin d g^{\prime}(x)$. By FTC -1, $g^{\prime}(x)=\sin (u) \cdot u^{\prime}=\sin \left(x^{3}\right) \cdot 3 x^{2}$.

Ex Find an antiderivative for $f(x)=e^{x^{2}}$.
Let $A(x)=\int_{0}^{x} e^{t^{2}} d t$. By FTC-1, $A^{\prime}(x)=e^{x^{2}}$, so
A is an antiderivative for f.

* This is not very satisfying formula -we will do better in call 2.
pt sketch for FTC-1
Let f be continuous on $[a, b]$. Define

$$
A(x)=\int_{a}^{x} f(t) d t
$$

we wont to show $A^{\prime}(x)=f(x)$. Now,

$$
A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}
$$

Let's study the numerator.

$$
\approx f(x) \cdot h
$$

Thus,

$$
A^{\prime}(x)=\lim _{h \rightarrow 0} \frac{A(x+h)-A(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x) \cdot h}{\not h}=f(x)
$$

ff sketch for FTC-2

Let f be continuous on $[a, b]$. Let F be any antiderivative for F. We want to show

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

By $F T C-2$,

$$
A(x)=\int_{a}^{x} f(t) d t
$$

is another antiderivative for f. Thus,

$$
F(x)=A(x)+C
$$

Now,

$$
\begin{aligned}
F(b)-F(a) & =(A(b)+c)-(A(a)+c) \\
& =A(b)-A(a) \\
& =\int_{a}^{b} f(t) d t-\int_{a}^{a} f(t) d t \\
& =\int_{a}^{b} f(x) d x .
\end{aligned}
$$

NET Change (Interpreting definite integrals)

Recall FTC-2

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Thus,

$$
\int_{a}^{b}\binom{\text { rate ad }}{\text { change }} d x=\binom{\text { net change }}{\text { over }[a, b]}
$$

Ex
(1) Suppose $s(t)$ gives position at time.

$$
\int_{t_{1}}^{t_{2}} \frac{S^{\prime}(t)}{\gamma} d t=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{\tau \text { displacement }}
$$

(1) Suppose $P(t)$ is the size of a population at time.

$$
\int_{t_{1}}^{t_{2}} \frac{P^{\prime}(t)}{\text { growth rate }} d t=\frac{P\left(t_{2}\right)-P\left(t_{1}\right)}{C_{\text {change in population }}}
$$

Ex Suppose am object attached to a spring moveswith velocity

$$
v(t)=\sin \left(\frac{\pi}{2} t\right) \quad f t / s .
$$

(a) What is the displacement of the object from $t=1$ to $t=6$?

$$
\begin{aligned}
s(6)-s(1) & =\int_{1}^{6} s^{\prime}(t) d t=\int_{1}^{6} \sin \left(\frac{\pi}{2} t\right) d t \\
& =-\left.\frac{2}{\pi} \cos \left(\frac{\pi}{2} t\right)\right|_{1} ^{6}=\frac{2}{\pi} f t
\end{aligned}
$$

(b) What is the displacement from $t=2$ tot $t=6$?

$$
S(6)-s(2)=\int_{2}^{6} \sin \left(\frac{\pi}{2} t\right) d t=-\left.\frac{2}{\pi} \cos \left(\frac{\pi}{2} t\right)\right|_{2} ^{6}=0 f+
$$

$$
G W-30 \quad \# 1
$$

Computing antiderivatices is important! We need more techniques, so we can solve move problems.

Ex compute $\int \cos \left(x^{2}\right) \cdot x d x$
option l: Trial ई Error
Need to find $F(x)$ sit. $F^{\prime}(x)=\cos \left(x^{2}\right) \cdot x$
Try $F(x)=\sin \left(x^{2}\right) \xrightarrow{\text { der }} \cos \left(x^{2}\right) \cdot 2 x$ No \because
Try $F(x)=\frac{1}{2} \sin \left(x^{2}\right) \xrightarrow{\text { der }} \cos \left(x^{2}\right) \cdot x$ Yes!.

$$
\int \cos \left(x^{2}\right) \cdot x d x=\frac{1}{2} \sin \left(x^{2}\right)+C
$$

Option 2: Substitution

Let $n=x^{2}$.

$$
\int \cos \left(x^{2}\right) \cdot x d x=\int \cos (n) \cdot \frac{x d x}{4}
$$

need to fully substitute for x

- $u=x^{2} \Rightarrow \frac{d u}{d x}=2 x \Rightarrow d u=2 x d x$
- than, $x d x=\frac{1}{2} d u$

$$
\begin{aligned}
\int \cos \left(x^{2}\right) x d x & =\int \cos (u) \cdot \frac{1}{2} d u=\frac{1}{2} \int \cos u d u \\
& =\frac{1}{2} \sin u+c=\frac{1}{2} \sin \left(x^{2}\right)+C
\end{aligned}
$$

substitute
back

Substitution Rule If $u=g(x)$, then $d u=g^{\prime}(x) d x$ and

$$
\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u
$$

Choosing u
(1) Often wort u to be the "inside" of a function - this could also mean u should be the exponent or the bottom of a fraction

- this does NOT always work
(2) Might have to try multiple substitutions

Ex compute $\int 7 x^{2} \sqrt{1-x^{3}} d x$
Try $u=\underline{1-x^{3}} \Rightarrow \frac{d u}{d x}=-3 x^{2} \Rightarrow d u=-3 x^{2} \underline{d x} \Rightarrow-\frac{1}{3 x^{2}} \cdot d u=\underline{d x}$

$$
\begin{aligned}
\int 7 x^{2} \underline{\underline{1-x^{3}}} d x & =\int 7 x^{2} \sqrt{u} \underline{\underline{x}} \\
& =\int 7 x^{7} \sqrt{u} \cdot \frac{-1}{3 x^{x}} \cdot d u \\
& =-\frac{7}{3} \int u^{1 / 2} d u \\
& =-\frac{7}{3} \cdot \frac{2}{3} \cdot u^{3 / 2}+c \quad \text { sub. back } \\
& =-\frac{14}{9}\left(1-x^{3}\right)^{3 / 2}+c \quad
\end{aligned}
$$

Substitution with Definite Integrals

Ex compute $\int_{0}^{4} \sqrt{2 x+1} d x$
Try $u=2 x+1 \Longrightarrow d u=2 \underline{d x} \Longrightarrow \frac{1}{2} d u=d x$

$$
\begin{aligned}
\int_{0}^{4} \sqrt{2 x+1} d x & =\int_{x=0}^{x=4} \sqrt{2 x+1} d x \\
& =\int_{x=0}^{x=4} \sqrt{u} \cdot \frac{1}{2} d u \quad \begin{array}{l}
x=2 x+1 \\
x=4 \rightarrow u=9 \\
x=0 \rightarrow u=1
\end{array} \\
& =\frac{1}{2} \int_{u=1}^{u=9} u^{1 / 2} d u \\
& =\left.\frac{1}{2} \frac{2}{3} u^{3 / 2}\right|_{1} ^{9} \\
& =\frac{1}{3} 9^{3 / 2}-\left.\frac{1}{3}\right|^{3 / 2}=\frac{1}{3} \cdot 27-\frac{1}{3}=\frac{26}{3}
\end{aligned}
$$

Ex Compute $\int_{\pi / 2}^{\pi} \sin ^{2} \theta \cos \theta d \theta$.

$$
\begin{aligned}
\int_{\pi / 2}^{\pi}(\sin \theta)^{2} \cos \theta d \theta & =\int_{\theta=\pi / 2}^{\theta=\pi} u^{2} \cdot d u \\
& =\int_{1}^{0} u^{2} d u \\
& =\left.\frac{1}{3} u^{3}\right|_{1} ^{0} \\
& =0-\frac{1}{3} \\
& =-\frac{1}{3}
\end{aligned}
$$

$$
\theta=\pi \longrightarrow u=0
$$

$$
\theta=\pi / 2 \longrightarrow u=1
$$

Mone Practice

Ex Compate

$$
\int \frac{2 x^{3}}{1-x^{4}} d x
$$

$$
\int \frac{2 x^{3}}{1-x^{4}} d x=2 \int \frac{x^{3}}{4} d x
$$

$$
=2 \int \frac{x^{2 b}}{u} \cdot \frac{-1}{4 y^{25}} \cdot d u
$$

$$
=-\frac{1}{2} \int \frac{1}{u} d u
$$

$$
=-\frac{1}{2} \ln |n|+c
$$

$$
=-\frac{1}{2} \ln \left|1-x^{4}\right|+C
$$

WS-30 \#2,3

Ex compute $\int \frac{x}{\sqrt{1-x^{4}}} d x$

$$
\begin{aligned}
\int \frac{x}{\sqrt{1-x^{4}}} d x & =\int \frac{x}{\sqrt{1-u^{2}}} d x \\
& =\int \frac{x}{\sqrt{1-u^{2}}} \cdot \frac{1}{2 x} d u \\
& =\frac{1}{2} \int \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\frac{1}{2} \arcsin (u)+C \\
& =\frac{1}{2} \arcsin \left(x^{2}\right)+C
\end{aligned}
$$

Ex $\int x^{2} \sqrt{1-x} d x$

$$
\begin{aligned}
& \int x^{2} \sqrt{1-x} d x=\int x^{2} \sqrt{u} d x \\
&=-\int x^{2} \sqrt{u} d u \\
& \text { what to do? }
\end{aligned}
$$

$\operatorname{try} u=1-x$

$$
d u=-d x
$$

... reuse the substitution!

$$
u=1-x \Rightarrow x=1-u
$$

$$
\begin{aligned}
& =-\int(1-u) \sqrt{u} d u \\
& =-\int(1-u) u^{1 / 2} d u \\
& =-\int u^{1 / 2}-u^{3 / 2} d u \\
& =-\frac{2}{3} u^{3 / 2}-\frac{2}{5} u^{5 / 2}+C \\
& =-\frac{2}{3}(1-x)^{3 / 2}-\frac{2}{5}(1-x)^{5 / 2}+C
\end{aligned}
$$

Than $\int \tan \theta d \theta=-\ln |\cos \theta|+C=\ln |\sec \theta|+C$
pt

$$
\begin{aligned}
\int \tan \theta d \theta & =\int \frac{\sin \theta}{\cos \theta} d \theta \quad u=\cos \theta \\
& =-\int \frac{1}{u} d u \\
& =-\ln |u|+C \\
& =-\ln |\cos \theta|+C \\
& =\ln \left|(\cos \theta)^{-1}\right|+C \\
& =\ln |\sec \theta|+C
\end{aligned}
$$

